回归分析系列10—交叉验证与模型选择

 12 交叉验证与模型选择

12.1 简介

在构建预测模型时,选择合适的模型至关重要。不同的模型可能会对同一数据集产生不同的预测效果,因此需要通过某些方法来评估和选择模型。交叉验证是一种常用的技术,用于评估模型的表现并避免过拟合。

12.2 交叉验证

交叉验证是一种将数据分成多个子集,并对每个子集分别进行训练和测试的技术。最常见的形式是K折交叉验证,其中数据被分成K个子集,每次使用一个子集作为测试集,其余的作为训练集。

在Python中,scikit-learn提供了cross_val_score函数来执行K折交叉验证。

from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

# 生成模拟数据
X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=42)

# 构建线性回归模型
model = LinearRegression()

# 执行5折交叉验证
cv_scores = cross_val_score(model, X, y, cv=5)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值