1、建立数据集
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()
随机生成一组数据,y=x^2+b,b为随机噪声,并生成画出散点图。
Net(
(hidden): Linear(in_features=1, out_features=10, bias=True)
(predict): Linear(in_features=10, out_features=1, bias=True)
)
2、建立神经网络
class Net(torch.nn.Module): # 继承 torch 的 Module
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() # 继承 __init__ 功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层线性输出
self.predict = torch.nn.Linear(n_hidden, n_output) # 输出层线性输出
def forward(self, x): # 这同时也是 Module 中的 forward 功能
# 正向传播输入值, 神经网络分析出输出值
x = F.relu(self.hidden(x)) # 激励函数(隐藏层的线性值)
x = self.predict(x) # 输出值
return x
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net) # net 的结构
"""
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
"""
定义了隐藏层和输出层都继承了nn.Module
中的nn.Linear
线性层。
nn.Linear(in_features, out_features, bias=True)
对输入数据进行线性变换: y=Ax+b
Parameters:
- in_features – 每个输入样本的大小
- out_features – 每个输出样本的大小
- bias – 若设置为 False, 这层不会学习偏置. 默认值: True
同时定义了前向传播,输入通过隐藏层后,再经过激励函数,得到输出值。
3、训练网络
# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.2) # 传入 net 的所有参数, 学习率
loss_func = torch.nn.MSELoss() # 预测值和真实值的误差计算公式 (均方差)
fig = plt.figure()
plt.ion()
for t in range(200):
prediction = net(x) # 喂给 net 训练数据 x, 输出预测值
loss = loss_func(prediction, y) # 计算两者的误差
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff() # 画图
plt.show()
采用了nn.MSELoss
,输入 x 和 目标 y 之间的均方差 loss = 1/n∑(xi - yi)^2
torch.nn.MSELoss(size_average=True, reduce=True)
x 和 y 可以是任意维度的数组, 但需要有相同数量的n个元素。
求和操作会对n个元素求和,最后除以 n。
在构造函数的参数中传入 size_average=False
, 最后求出来的绝对值将不会除以 n。
要得到每个 batch 中每个元素的 loss, 设置 reduce
为False
。返回的 loss 将不会 取平均值, 也不会被size_average
影响。
2018.08.25 整理于莫烦Python教程
https://morvanzhou.github.io/tutorials/machine-learning/torch/3-01-regression/