卷积函数:
nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
对几个输入平面组成的输入信号应用一个2D卷积.
Parameters:
input – 形状为 (minibatch x in_channels x iH x iW) 的输入张量
weight – 形状为 (out_channels x in_channels/groups x kH x kW) 的滤波器
bias – 可选的偏置,形状为 (out_channels
). 默认值: None
stride
– 卷积核的步长. 可以是单个数字, 也可以是一个元组 (sH, sW). 默认值: 1
padding
– 输入两端隐式零填充的个数. 可以是单个数字, 也可以是一个元组 (padH, padW). 默认值: 0
dilation – 卷积核中元素之间的空洞大小. 可以是单个数字, 也可以是一个元组 (dH, dW). 默认值: 1
groups – 将输入分成的组的个数. in_channels 的值要求能够被 groups 的值整除. 默认值: 1
池化函数:
nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
对于多个输入通道组成的输入信号,应用二维的最大池化 max pooling 操作.
Parameters:
kernel_size
– 最大池化操作时的窗口大小
stride
– 最大池化操作时窗口移动的步长, 默认值是 kernel_size
padding
– 输入的每条边隐式补0的数量
dilation – 用于控制窗口中元素的步长的参数
return_indices – 如果等于 True, 在返回 max pooling 结果的同时返回最大值的索引 这在之后的 Unpooling 时很有用
ceil_mode – 如果等于 True, 在计算输出大小时,将采用向上取整来代替默认的向下取整的方式
线性函数:
nn.functional.linear(input, weight, bias=None)
对输入的数据应用线性转换。
Shape:
Input: (N,∗,in_features)其中 * 表示任意数量的附加维度
Weight: (out_features,in_features)
Bias: (out_features)
Output: (N,∗,out_features)
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision # 数据库模块
import matplotlib.pyplot as plt
torch.manual_seed(1) # reproducible
# Hyper Parameters
EPOCH = 1 # 训练整批数据多少次, 为了节约时间, 我们只训练一次
BATCH_SIZE = 50
LR = 0.001 # 学习率
DOWNLOAD_MNIST = True # 如果你已经下载好了mnist数据就写上 False
# Mnist 手写数字
train_data = torchvision.datasets.MNIST(
root='./mnist/', # 保存或者提取位置
train=True, # this is training data
transform=torchvision.transforms.ToTensor(), # 转换 PIL.Image or numpy.ndarray 成
# torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
download=DOWNLOAD_MNIST, # 没下载就下载, 下载了就不用再下了
)
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()
训练数据的大小及标签大小
torch.Size([60000, 28, 28])
torch.Size([60000])
训练数据中的第一张图
设置训练数据,搭建CNN卷积神经网络
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# 为了节约时间, 我们测试时只测试前2000个
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(
in_channels=1, # input height
out_channels=16, # n_filters
kernel_size=5, # filter size
stride=1, # filter movement/step
padding=2, # 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2 当 stride=1
), # output shape (16, 28, 28)
nn.ReLU(), # activation
nn.MaxPool2d(kernel_size=2), # 在 2x2 空间里向下采样, output shape (16, 14, 14)
)
self.conv2 = nn.Sequential( # input shape (16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
nn.ReLU(), # activation
nn.MaxPool2d(2), # output shape (32, 7, 7)
)
self.out = nn.Linear(32 * 7 * 7, 10) #全连接层 fully connected layer, output 10 classes
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # 展平多维的卷积图成 (batch_size, 32 * 7 * 7)
output = self.out(x)
return output
cnn = CNN()
print(cnn) # net architecture
输出网络结构:
CNN(
(conv1): Sequential(
(0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(
(0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(out): Linear(in_features=1568, out_features=10, bias=True)
)
训练过程
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # 分配 batch data, normalize x when iterate train_loader
output = cnn(b_x) # cnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
test_output = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')
测试结果
[7 2 1 0 4 1 4 9 5 9] prediction number
[7 2 1 0 4 1 4 9 5 9] real number
2018.09.06 整理于莫烦Python教程
https://morvanzhou.github.io/tutorials/machine-learning/torch/4-01-CNN/