随着工业的智能化和数字化发展,设备维护的方式得到不断优化。人工智能(AI)、机器学习和云计算等先进技术的引入,使得设备健康管理系统的数据采集、实时分析、故障预警与智能诊断等能力得到提升。借助这些设备预测性维护手段,设备维护工程师可以提前采取措施,最大限度地减低计划外停机时间、控制维护成本、延长设备的使用寿命并改善工厂的安全性。
图.基于AI的预测性维护(全景网)
设备维护是企业利润的关键
能源、电力和石油石化行业的工厂设备通常是比较复杂的,需要大量的设备和基础设施储存和管理液体以及气体原料。因此,减少因设备故障而导致的计划外停机,对于提高企业利润至关重要。在工业设备故障中,导致了三分之一以上的意外停机,机械故障是较为常见的故障类型。制定良好的设备维护计划可以提高设备正常运行时间,增加设备的可靠性。
预测性维护的好处
有研究报告显示,预测性维护可提高设备可用性超过10%,并将设备使用寿命延长40%。更重要的是,预测性维护还能有效降低20%以上的设备维护成本。
通常情况下,旋转设备和往复式设备的故障率较高。其中,振动问题是旋转设备(特别是泵类设备)故障的主要原