程序员有必要考个 985 非全日制研究生嘛?

本文探讨了非全日制研究生的考试难度、学历价值,指出适合转行IT、未考上全日制的毕业生以及需要学历提升的职场人士报考。强调备考时的计划制定和执行力的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是伍六七。

经常有读者问我,非全日制研究生好考嘛?有用嘛?今天我们来聊聊这个问题。

科普一下:什么是非全日制研究生?

非全日制研究生是国家在 2017 年对教育行业的重大改革。

非全日制需要参加和全日制同时间的全国统考。非全日制可以拿双证:学历证、学位证。虽然是参加全国统考,但是非全日制相比于全日制的分数线更低,基本上低了几十分。

证书上,唯一的区别是非全日制研究生的证书上,会标明是全日制。

上课时间,非全日制是在周一到周五的晚上,还有周六、周日上课,主要针对的是上班族。

有没有用?要不要考?哪些人要考?

做一件事情之前,都应该问问做这件事的目的是什么?尤其是这件事情要消耗你大量的时间和大量的金钱。

非全日制这件事就属于这种。需要大量的时间和金钱。

所以,基本准则就是考上之后,对你的工作或者生活有帮助、有提升,你就应该去考。

1、你原来是从事其他行业的,想要转行到 IT 行业,那你考个 985 的相关专业非全日制研究生,绝对有用。

我有个同学做了几年传统行业,考上人大的信息学院,毕业去商汤科技,两年后直接去了阿里,年薪 60W。

2、你刚毕业,考全日制研究生没考上,这个时候选择 985 的非全日制研究生,那也非常有用

大厂是完全认这个学历的。我实验室好几个本科毕业直接读非全的,基本上都去了大厂,年薪几十万。还有一个去了大厂,还拿了北京户口,工资还不低!

3、如果你在一个唯学历论的公司,而且你所在公司认可非全日制学历,有这个学历对你的升职加薪有帮助,那也可以考一个。

这种公司你就使劲提升学历吧,怎么提升都不过分,后面可以再接一个博士,我们实验室就有一个读完研究生,让导师推荐同校博士的。

4、如果你本身就在 IT 行业,感叹为什么别人的工资那么高,想通过考研提升工资水平,那么不是很建议。因为它并不能帮你提升工资水平。决定你工资水平的还是你过往的工作经历和你的能力。

好不好考?

答案是:不好考,但是比相同学校的全日制好考。

就我知道我这一届 100 多个人,大部分原来本科的学校就很好,基本上 211、985,少部分人本科学校低于这个的。

而且,很多人在读期间就很卷,有时间就泡图书馆看书、码代码那种,这说明什么?说明他们本身就有非常大的欲望和自制力。

怎么备考?

具体的可以看我之前的文章在职如何备考非全日制研究生?

但是最重要的就是下面两点:

1、制定计划

一定要知道自己有哪些工作要做,有多少书要看,大概要多久。这个计划可以先制定一个,然后执行几天看看自己的时间以及进度进行调整。没有计划你会盲目,每天可能都需要花时间在考虑自己今天干嘛,时间是最宝贵的!

2、执行力

制定了计划,如果不执行的话就跟没有计划一样了,而且还浪费了制定计划的时间。计划相当于仰望星空,执行就相当于脚踏实地了,你光仰望星空屁用没有;你毫无计划的执行会走很多弯路或者一直走弯路,到不了终点。

就这样,有帮助点个赞再走~

点击下方链接,关注我,更多精彩等着你。

链接我

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍六七AI编程

你猜你给我1分我要不要

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值