- 实验名称
head网络构建实操
- 实验目的
(1)能完成分类与回归分支的构建;
(2)能完成Mask分支的构建。
- 实验内容
概述:基于Mask R-CNN框架,完成head网络的构建。Mask R-CNN是一种流行的目标检测与实例分割算法,其核心在于head网络,该网络负责分类、回归以及生成分割掩码
具体内容如下:
- 搭建分类与回归分支:包含两个共享全连接层和两个输出层
- 搭建Mask分支:包含4个卷积层、1个反卷积层和1个输出层
- 实验器材
MindSpore 1.5.0+
Python 3.7+
Jupyter Notebook
- 实验步骤与结果
(需包含关键步骤及代码)
1.环境准备
输出:
2.构建分类与回归分支
分类与回归分支是Mask R-CNN中的关键部分,负责预测目标的类别、边界框坐标等。在这次实验中,我们构建了包含两个共享全连接层和两个输出层的分支结构
共享全连接层:用于提取目标的深层次特征,这些特征将被用于后续的分类和回归任务
输出层:一个输出层用于分类任务,预测目标的类别;另一个输出层用于回归任务,预测目标的边界框坐标
输出:
通过这一步骤,我们成功构建了分类与回归分支,为后续的目标检测和实例分割任务奠定了基础
3.构建Mask分支
Mask分支是Mask R-CNN中实现实例分割的关键部分。Mask分支接收来自ROI Align层的特征图,并生成目标的分割掩码。
ROI Align层:用于从特征图中提取与候选区域(ROI)对应的特征。
卷积层:对提取的特征进行进一步处理,以生成更高层次的特征表示。
反卷积层:将高层次的特征上采样到原始图像尺寸,生成分割掩码
输出:
通过这一步骤,我们成功构建了Mask分支,实现了对目标的实例分割