head网络构建实操

  • 实验名称

head网络构建实操

  • 实验目的  

(1)能完成分类与回归分支的构建;

(2)能完成Mask分支的构建。

  • 实验内容

概述:基于Mask R-CNN框架,完成head网络的构建。Mask R-CNN是一种流行的目标检测与实例分割算法,其核心在于head网络,该网络负责分类、回归以及生成分割掩码

具体内容如下

  1. 搭建分类与回归分支:包含两个共享全连接层和两个输出层
  2. 搭建Mask分支:包含4个卷积层、1个反卷积层和1个输出层

  • 实验器材

MindSpore 1.5.0+

Python 3.7+

Jupyter Notebook

  • 实验步骤与结果

(需包含关键步骤及代码)

1.环境准备

输出:

2.构建分类与回归分支

分类与回归分支是Mask R-CNN中的关键部分,负责预测目标的类别、边界框坐标等。在这次实验中,我们构建了包含两个共享全连接层和两个输出层的分支结构

共享全连接层:用于提取目标的深层次特征,这些特征将被用于后续的分类和回归任务

输出层:一个输出层用于分类任务,预测目标的类别;另一个输出层用于回归任务,预测目标的边界框坐标

输出:

通过这一步骤,我们成功构建了分类与回归分支,为后续的目标检测和实例分割任务奠定了基础

3.构建Mask分支

Mask分支是Mask R-CNN中实现实例分割的关键部分。Mask分支接收来自ROI Align层的特征图,并生成目标的分割掩码。

ROI Align:用于从特征图中提取与候选区域(ROI)对应的特征。

卷积层:对提取的特征进行进一步处理,以生成更高层次的特征表示。

反卷积层:将高层次的特征上采样到原始图像尺寸,生成分割掩码

 

输出:

通过这一步骤,我们成功构建了Mask分支,实现了对目标的实例分割

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2501m_z91659378

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值