codeforces round#404(div.2) D. Anton and School - 2

1 篇文章 0 订阅
1 篇文章 0 订阅

 题意:定义RSBS序列,使得该序列为偶数个数(非空),前一半都是左括号,后一半都是右括号;输入一列括号,可将其部分括号删除使得剩下变成RSBS序列,输出删除的方法数。


一道数学题,先计算出右括号的总数量r,从左面开始遍历,左括号数量初始为l=0,遇到右括号就r--,遇到左括号就计算不删除该括号和其前面的左括号,右边的右括号组成的RSBS数量,即C(l+r,r-1)(意为当前不算该左括号的情况下,在l和r的总数量中选r-1个,选在左面的是左面不删的部分,选在右面的是右面删除的部分,可以包括所有的情况),总值加上该值(注意取模),然后l++,最后输出总值即可。

关于组合数问题,该组合数过大,需要取模来求,所以可以使用逆元法和快速幂来算出组合数,

逆元法:对于b/a(mod m)(a|b),我们无法对其直接取模,我们由扩展欧几里得知,

             当(a,m)=1时,a^(m-1)≡1(mod m)

             所以我们可得1/a≡a^(m-2)(mod m)

             所以b/a≡b*a^(m-2)(mod m)

进而用快速幂来算逆元后的结果,可得组合数。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<set>
#include<bitset>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<utility>
#define INF 0x3f3f3f3f
#define inf 2*0x3f3f3f3f
#define llinf 1000000000000000000
#define pi acos(-1)
#define mod 1000000007
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
ll fac[200005],i=0,len,l=0,r=0,sum=0;
char kuo[200005];
ll mod_pow(ll x,ll n)
{
    ll res=1;
    while(n>0)
    {
        if(n&1)res=res*x%mod;
        x=x*x%mod;
        n>>=1;
    }
    return res;
}
ll C(ll n,ll m)
{
    if(m>n||n<0||m<0)return 0;
    return fac[n]*mod_pow(fac[m],mod-2)%mod*mod_pow(fac[n-m],mod-2)%mod;
}
int main()
{
    while(scanf("%c",&kuo[i++])&&kuo[i-1]!='\n')
    {
        if(kuo[i-1]==')')r++;
    }
    len=i-1;fac[0]=1;
    for(i=1;i<=len;i++)fac[i]=fac[i-1]*i%mod;
    for(i=0;i<len;i++)
    {
        if(kuo[i]=='(')
        {
            sum=(sum+C(l+r,r-1))%mod;
            l++;
        }
        else r--;
    }
    cout<<sum<<endl;
    return 0;
}


             

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值