目标检测——评价指标

博客围绕目标检测评价指标展开,先介绍混淆矩阵,其用n行n列矩阵表示精度评价。接着结合混淆矩阵引出TP、FP、TN、FN的定义,最后阐述常用指标,如精准率、召回率、漏杀率和过杀率的含义及计算方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评价指标概述

1. TP、FP、TN、FN

1.1 混淆矩阵

提到TP、FP、TN、FN,首先介绍以下混淆矩阵。
混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用 n n n n n n列的矩阵形式来表示。
混淆矩阵的每一代表了预测类别,每一列的总数表示预测为该类别的数据的数目;每一代表了数据的真实归属类别,每一行的数据总数表示该类别的数据实例的数目
例如:

表1. 多类别混淆矩阵
prediction
Category 1Category 2Background
ground truthCategory 1801010
Category 2107020
Background555
如表1所示:

其中,第一行第一列的80表示原本属于类1,且预测为类1的数量为80。
第二行第一列的10表示原本属于类2,且预测为类1的数量为10。
第三行第一列的5表示原本属于背景,且预测为类1的数量为5。
其余数目同理。

第一行总数80+10+10=100,表示全部原本属于类1的数目是100。
第一列总数80+10+5=95,表示全部预测为类1的数目为95。
其余数目同理。

1.2 结合混淆矩阵理解TP、FP、TN、FN

经过混淆矩阵的理解,引出TP、FP、TN、FN的定义:

  • TP(True Positive): 真正例,表示预测为正例(positive),且预测正确(true),即原本为正例。
  • FN(False Negative): 假反例,表示预测结果为反例(negative),且预测错误(false),即原本为正例。
  • FP(False Positive): 假正例,表示预测结果为正例(positive),且预测错误(false),即原本为反例。
  • TN(true Negative): 真反例,表示预测结果为反例(negative),且预测正确(true),即原本为反例。(注:用不到这个)

个人记忆的方法是,后面的字母表示预测的结果,前面的字母表示预测的正确与否。

表2. 混淆矩阵
prediction
正例反例
ground truth正例TP(真正例)FN(假反例)
反例FP(假正例)TN(真反例)

1.3 常用指标

1.3.1 精准率(Precision):

P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP
精准率(Precision)又叫查准率,它是针对预测结果而言的,它的含义是在所有被预测为正的样本中实际为正的样本的概率,意思就是在预测为正样本的结果中,我们有多少把握可以预测正确。

1.3.2 召回率(Recall):

R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP
召回率(Recall)又叫查全率,它是针对原样本而言的,它的含义是在实际为正的样本中被预测为正样本的概率。

1.3.3 漏杀:

漏杀率 = F N T P + F P = 1 − P 漏杀率=\frac{FN}{TP+FP}=1-P 漏杀率=TP+FPFN=1P

漏杀率的评估方式是假反例除以总样本数。

1.3.4 过杀:

过杀率 = F P T P + F P 过杀率=\frac{FP}{TP+FP} 过杀率=TP+FPFP

过杀率的评估方式是假正例除以总样本数。

目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSDRetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框类别概。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值