ACM-5元和10元的经典问题

教学楼有一台奇怪的自动售货机,它只售卖一种饮料,单价5元,并且只收5元、10元面值的货币,但是同学们都很喜欢喝。这个售货机里没有多余的找零,也就是说如果一个持有10元的同学第一个购买,则他不能获得5元找零,但是如果在他之前有一个持有5元的同学买了这种饮料,则他可以获得5元找零。  假设售货机的货源无限,每人只买一罐,现在有N个持有5元的同学和M个持有10元的同学想要购买,问一共有多少种排队方法可以让每个持有10元的同学都获得找零。(这里的排队方法以某一位置上人持的钱数来分,即只要同一位置上的同学所持钱的数目相同,就算同一种排队方法)

输入:

多组测试数据   每组包含两个整数N,M(1<=M<=N<=1000),分别表示持有5元和10元的同学个数。

输出:

输出一个整数,表示排队方法总数。由于结果可能很大,所以结果需要模1000000007。

样例输入:

1 1

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值