非参数统计:方法与应用(全书例题R语言实现)

非参数统计:方法与应用

(全书例题R语言实现)

第二章

2.1

例2.1
a <- c(88,12)
b <- c(0.95,0.05)
chisq.test(a,p = b) $p.value p = 0.001318969
例2.2
a <- c(380,69,43,8)
b <- c(0.8,0.12,0.07,0.01)
chisq.test(a, p = b) $p.value p = 0.1127
例2.4(续2.2)
a <- c(380,69,51)
b <- c(0.8,0.12,0.08)
chisq.test(a, p = b) p . v a l u e p = 0.06805 例 2.4 a < − c ( 3 , 8 , 10 , 7 , 2 ) b < − c ( 0.1174 , 0.2355 , 0.328 , 0.2437 , 0.0754 ) c h i s q . t e s t ( a , p = b ) p.value p = 0.06805 例2.4 a <- c(3,8,10,7,2) b <- c(0.1174,0.2355,0.328,0.2437,0.0754) chisq.test(a, p = b) p.valuep=0.068052.4a<c(3,8,10,7,2)b<c(0.1174,0.2355,0.328,0.2437,0.0754)chisq.test(a,p=b)p.value p = 0.9929581

2.2

例题2.6 (1)
x = c(-5,-3,-1,0,1,2,4,7,8)
y = c(1,1,2,1,5,5,3,1,1)
mu = mean(rep(x,y))
z = (x-mu)/3
f0 = pnorm(z, 0, 1)
n = length(x)
sn = NULL
for(i in 1:n){
sn[i] <- sum(y[1:i])
}
Sn <- sn/20
D = max(abs(Sn-f0))

例题2.8
a <-c(11,11,8,9,7,9,12)
b=rep(1/7,7)
a=a/sum(a)
ks.test(jitter(a),jitter(b))

2.3

例题2.7
binom.test(9,10,alternative = ‘greater’,conf.level = 0.9)
例题2.8
binom.test(10,12,alternative = ‘greater’,conf.level = 0.9)
例题2.9
binom.test(12,14,alternative = ‘two.sided’,conf.level = 0.9)
例题2.10
binom.test(1,8,alternative = ‘two.sided’,conf.level = 0.95)
例题2.11
binom.test(5,6,alternative = ‘greater’,conf.level = 0.9)
例题2.12
binom.test(2,13,alternative = ‘less’,conf.level = 0.9)
例题2.14
binom.test(7,18,p=0.25,alternative = ‘greater’,conf.level = 0.9)
例题2.15
p1 <- pbinom(3,13,0.75,lower.tail = T)
p1
例题2.16
p2 <- pbinom(3,8,0.5,lower.tail = T)
p2
2.4
例题2.17
x1 <- c(24.3,25.8,25.4,24.8,25.2,25.1,25,25.5)
d <- abs(x1-25)
x2 <- x1[-which(d==0)]
wilcox.test(x2,alternative = ‘greater’,mu=25)
例题2.18
x1 <- c(42,51,31,61,44,55,48)
x2 <- c(38,53,36,52,33,49,36)
wilcox.test(x1-x2,alternative = ‘less’,mu=0)
例题2.21
y1 <- c(14,12,18,7,11,9,16,15,13,11,18,8,13,10,14,16,
15,12,17,7,11,9,16,15)
y2 <- c(10,4,14,6,9,6,12,12,10,5,15,6,9,6,11,12,11,6,
14,5,10,4,13,10)
wilcox.test(y1-y2,alternative = ‘two.sided’,exact = F,correct = T,mu=3)
2.5
例题2.19
library(tseries)
y1 <- c(1,1,0,1,0,0,1,1,1,0)
runs.test(factor(y1),alternative = ‘two.sided’)
例题2.20
y1 <- c(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1)

第三章

3.1

例题3.1
x1 <- c(2,2,2,2,3,3,3,3,3,3,2,3,3,2,3)
x2 <- c(3,4,2,3,2,3,4,4,2,4,4,3,4,4,4)
n1 <- sum(x1-x2>0)
n2 <- sum(x1-x2<0)
n=n1+n2
binom.test(n1,n,alternative = ‘less’)
例题3.2
x <- c(2,3,3,3,3,3,3,3,2,3,2,2,5,2,5,3,1)
y <- c(4,4,5,5,3,2,5,3,1,5,5,5,4,5,5,5,5)
n1 <- sum(x-y>0)
n2 <- sum(x-y<0)
n=n1+n2
binom.test(n1,n,alternative = ‘less’)

3.2

例题3.3
x <- c(78,70,67,81,76,72,85,83)
y <- c(62,58,63,77,80,73,82,78)
wilcox.test(x,y,paired = T,alternative = ‘two.sided’,
exact = T,correct = F)
x <- c(78,70,67,81,76,72,85,83)
y <- c(62,58,63,77,80,73,82,78)
wilcox.test(x,y,paired = T,alternative = ‘greater’,
exact = T,correct = F)

第四章

4.1

例题4.1
x = c(0.94,1.56,1.15)
y = c(1.20,1.63,2.26,1.87,2.20,1.30)
wilcox.test(x,y,paired = F,alternative = ‘less’)
例题4.2
x <- c(83,82,84,96,90,64,91,71,75,72)
y <- c(42,61,52,78,69,81,75,78,78,65)
wilcox.test(x,y,paired = F,alternative = ‘greater’)

4.2

例题4.3
library(tseries)
y <- c(0,0,0,1,0,0,1,1,1,0,
0,0,0,0,1,1,1,1,1,1)
y <- as.factor(y)
runs.test(y)

4.3

例题4.4
f1 <- c(60,21,11,4,4)
f2 <- c(130,50,10,6,4)
f <- f1+f2
n1 <- sum(f1);n2 <- sum(f2);n <- sum(f)
e1 <- f*(n1/n);e2 <- f-e1
Q <- sum((f1-e1)2/e1)+sum((f2-e2)2/e2)
qchisq(0.05,df=4,lower.tail = F)
pchisq(Q,df=4,lower.tail =

非参数统计王星第三版pdf》是一本关于非参数统计学的教材,由王星编写并发布。非参数统计统计学中的一个重要分支,它不依赖于总体的概率分布形式,在数据分析中具有广泛的应用。 该书第三版是在前两版的基础上进行了修订和更新。它的主要内容包括非参数估计、非参数检验和非参数回归等部分。非参数估计主要讨论了核密度估计、分位数回归和最大似然估计等方法,它们可以用来估计总体的分布函数或密度函数。非参数检验主要介绍了基于秩和秩相关的Wilcoxon符号秩检验、Mann-Whitney U检验和Kendall等相关性检验等方法,用于检验总体分布是否存在差异或相关性。非参数回归则介绍了局部加权回归和核回归等方法,用于建立自变量和因变量之间的非线性关系。 该书的特点是理论实践相结合,通过大量的案例和实证研究来展示非参数统计方法应用。此外,书中还介绍了一些常用的统计软件和编程工具,如R语言和Python等,以帮助读者实际运用非参数统计方法进行数据分析和建模。 《非参数统计王星第三版pdf》对于统计学专业的学生和从事数据分析工作的人士都是一本很好的参考书,它系统地介绍了非参数统计学的基本理论和方法,并给出了实际应用的例子和步骤。读者可以通过学习该书来掌握非参数统计的基本原理和技巧,提高数据分析和建模的能力。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值