大语言模型(LLM)应用实践:透过检索增强生成(RAG)洞察大语言模型应用的核心本质

在近期对大语言模型(LLM)实际应用的深度探索中,RAG(Retrieval Augmented Generation,检索增强生成)这一技术架构频频闯入我的视野。它绝非仅仅是一个专业术语,更是架起知识与智能之间的坚实桥梁。

要透彻理解RAG应用的完整架构,从基础概念、技术方案选型,再到最终的部署上线,这一过程既复杂又需要细致入微的钻研。鉴于此,我计划推出一个系列博客(后续也可能以推文合集的形式呈现📘),将与你一同抽丝剥茧,拆解RAG的每一处关键环节,通过真实的实战案例,深度剖析LLM应用背后的技术细节与设计逻辑。

None

1、 什么是 RAG?

检索增强生成(RAG)是一种将信息检索技术与语言生成模型相结合的方法。传统的大语言模型依赖于预训练过程中学习到的知识进行回答,而 RAG 引入了外部知识库,在接收到用户提问后,先从外部知识库中检索相关信息,再将检索到的内容与用户问题一同输入到语言模型中,辅助模型生成更准确、更贴合实际需求的回答 。​

简单来说,RAG 就像是给大语言模型配备了一个随时可以查阅的 “智能图书馆”。当模型需要回答问题时,它不再仅仅依靠自身记忆,而是能够从 “图书馆” 中快速检索到最相关的资料,基于这些资料生成答案。这种方式不仅拓宽了模型的知识边界,还显著提升了答案的时效性和准确性。

2、 为什么需要 RAG?

(一)解决知识过时问题

大语言模型的预训练数据通常是某个时间节点之前的静态数据,随着时间推移,新知识、新事件不断涌现,模型难以实时更新知识。例如,对于 2023 年后发生的重大科技突破、政策变化等,未经过重新训练的模型可能一无所知。RAG 通过引入动态更新的外部知识库,能够让模型随时获取最新信息,解决知识滞后的问题。

(二)提升回答准确性

在处理专业领域知识或复杂问题时,大语言模型可能会出现 “幻觉” 现象,即生成看似合理但实际错误的答案。RAG 通过检索与问题相关的权威资料,为模型提供可靠的事实依据,约束模型的生成内容,从而大幅提高回答的准确性和可信度。

(三)适应多样化需求

不同用户的提问场景和需求千差万别,单一的预训练模型难以满足所有需求。RAG 可以根据不同领域、不同应用场景定制专属的知识库,使得模型能够在特定领域发挥更出色的表现,如法律问答、医疗咨询、企业内部知识管理等。

3、 RAG 架构全览:从数据到答案的完整流程

RAG 架构主要分为数据索引阶段(Indexing)和检索与生成阶段(Retrieval & Generation),下面详细介绍这两个阶段的工作流程。

1. 数据索引阶段(Indexing)

用于预处理、清洗和存储可检索的知识:

  1. 数据收集:从各种来源收集数据,包括文档、网页、数据库、书籍等。这些数据应涵盖与应用场景相关的各类知识,确保知识库的全面性。例如,构建企业内部知识管理系统的 RAG 时,需要收集企业的规章制度、项目文档、产品手册等资料。

  2. 数据预处理:对收集到的数据进行清洗、分词、去除噪声等预处理操作。将文本数据转换为适合索引的格式,同时提取关键信息,如关键词、主题等。例如,将 PDF 文档转换为纯文本格式,去除其中的乱码和无关符号。

  3. 向量嵌入生成:使用词嵌入模型(如 Word2Vec、BERT 等)将预处理后的文本转换为向量表示。每个文本片段对应一个向量,向量之间的距离反映了文本语义的相似度。这一步是实现高效检索的关键,通过向量空间中的距离计算,可以快速找到与用户问题语义相近的文本。

  4. 索引构建:将生成的向量存储到向量数据库(如 Milvus、Chroma 等)中,并建立索引结构。索引结构能够加速向量的查询和检索,常见的索引类型包括 KD - Tree、HNSW 等。通过合理选择索引结构和参数配置,可以大幅提升检索效率。
    None

2. 检索与生成阶段(Retrieval & Generation)

  1. 问题理解:用户输入问题后,首先对问题进行解析和理解。可以使用自然语言处理技术提取问题中的关键词、关键短语,分析问题的语义和意图,明确用户想要获取的信息方向。

  2. 检索相关文档:将处理后的问题转换为向量表示,然后在向量数据库中进行检索。通过计算问题向量与数据库中向量的相似度(如余弦相似度),筛选出与问题最相关的若干文本片段。检索的文本数量需要根据实际情况进行调整,过多可能引入噪声,过少则可能无法提供足够的信息支持。

  3. 文档排序与整合:对检索到的文本片段进行排序,优先选择相似度高、权威性强的文档。同时,对相关文档进行整合,去除重复内容,提取关键信息,形成一个包含丰富上下文的文本集合。

  4. 答案生成:将整合后的文本集合与原始问题一同输入到大语言模型中,模型基于这些信息生成最终答案。在生成过程中,模型会结合检索到的知识和自身的语言生成能力,输出符合用户需求的回答。

None

📌 示例代码(LangChain):

from langchain.document_loaders import WebBaseLoader
from langchain.indexes import VectorstoreIndexCreator
loader = WebBaseLoader("https://www.promptingguide.ai/techniques/rag")
index = VectorstoreIndexCreator().from_loaders([loader])
index.query("What is RAG?")

五行代码即可完成从网页加载知识、建库、提问和回答,但注意⚠️:

这只是抽象封装后的“演示版”,不适合构建可控性强、可扩展性高的生产级系统。

4、 实战技巧:掌控数据的每一环才是关键

一)数据质量把控

  1. 确保数据准确性:对收集到的数据进行严格审核,尤其是涉及专业知识、事实性信息的数据,要保证其真实可靠。可以通过交叉验证、专家审核等方式提高数据质量。

  2. 关注数据时效性:定期更新知识库,及时补充新的知识和信息,确保模型能够回答最新的问题。例如,对于新闻类问答系统,需要实时抓取最新的新闻资讯。

  3. 优化数据多样性:尽量收集不同来源、不同类型、不同风格的数据,丰富知识库的内容。多样化的数据可以帮助模型更好地理解各种语言表达和问题场景,提高回答的灵活性。

(二)向量嵌入与索引优化

  1. 选择合适的嵌入模型:根据数据特点和应用场景选择合适的词嵌入模型。对于一般的文本数据,BERT 等预训练模型能够提供较好的语义表示;对于特定领域的数据,可以考虑在预训练模型的基础上进行微调,以提高嵌入的准确性。

  2. 调整索引参数:根据数据规模和查询需求,合理调整索引的参数。例如,在向量数据库中,调整距离度量方式、索引构建的精度等参数,在保证检索准确性的同时,提高检索速度。

  3. 定期更新索引:随着数据的不断增加和变化,及时更新索引结构,确保检索的有效性。可以设置定时任务,定期对向量数据库进行索引重建和优化。

(三)检索与生成的协同调优

  1. 优化检索策略:通过实验和数据分析,确定合适的检索文档数量和相似度阈值。可以尝试不同的检索算法和排序规则,找到最能提高答案质量的检索策略。

  2. 调整生成模型参数:根据实际应用效果,对大语言模型的生成参数进行调整,如温度参数(控制生成文本的随机性)、最大生成长度等。通过不断尝试和优化,找到最适合应用场景的参数组合。

  3. 反馈机制建立:建立用户反馈机制,收集用户对答案的评价和建议。根据反馈信息,对 RAG 系统进行持续优化,不断提高回答的质量和用户满意度。

检索增强生成(RAG)技术通过整合外部知识库与大语言模型的能力,为 LLM 应用开辟了新的方向。从数据索引到答案生成的每个环节,都蕴含着提升模型性能的关键要素。通过掌握 RAG 的核心原理和实战技巧,我们能够更好地发挥大语言模型的潜力,使其在各个领域的应用中创造更大的价值。随着技术的不断发展,RAG 也将不断演进,为人工智能的发展注入新的活力。

总结:RAG 是 LLM 应用落地的关键拼图

本系列首篇,我们介绍了:

✅ RAG 的基本概念
✅ 它为何成为提升模型能力的重要手段
✅ 典型的架构组成与流程
✅ 实现方法背后的逻辑与挑战

未来的文章中,我们将从用户输入处理、前端集成到完整部署,带你深入理解每个模块的构建细节。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值