洛谷P1217 [USACO1.5]回文质数 Prime Palindromes 暴力枚举 C++

题目描述

因为 151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。

写一个程序来找出范围 [a,b](5≤a<b≤100,000,000)( 一亿)间的所有回文质数。

输入格式

第 1 行: 二个整数 a 和 b .

输出格式

输出一个回文质数的列表,一行一个。

输入输出样例

输入 #1复制

5 500

输出 #1复制

5
7
11
101
131
151
181
191
313
353
373
383

思路简介:

先枚举出四位数以下的所有回文质数保存到数组中,单独判定是否在[n,m]内,是则输出。再选择位数来当作枚举的变量之一,记录下n和m的位数,利用位次通过几重循环来先制造回文数,再判断是否是质数且在[n,m]内,满足输出即可。
利用结论:偶数位数的回文数不是质数。所以枚举的位数只有五位数和七位数

AC代码如下:

#include<bits/stdc++.h>
using namespace std;
int isp(int x) {
	for (int i = 2; i * i <= x; i++)//i*i<=x比用sqrt更快
	{
		if (x % i == 0)return 0;
	}
	return 1;
}//判断是否是质数的函数
int main() {
	int n, m;
	int a[18] = { 5,7,11,101,131,151,181,191,313,353,373,383,727,757,787,797,919,929 };//四位数以下的回文质数直接枚举出来
	cin >> n >> m;
	for (int i = 0; i < 18; i++) 
		if (a[i] >= n && a[i] <= m)cout << a[i] << endl;//输出满足要求的四位数以下的回文质数

	int t1 = n, t2 = m, t = 0;
	int len1 = 0, len2 = 0;
	while (t1) {
		t1 /= 10;
		len1++;
	}
	while (t2) {
		t2 /= 10;
		len2++;
	}//len1和len2分别是n和m的位数
	int d1, d2, d3, d4;
	for (int i = len1;i<=len2;i++) {//从n的位数枚举到m的位数
		switch (i) {//偶数位数的回文数一定不是质数,题中最大范围是1*10^9,而真正需要枚举的位数只有五位数和七位数,枚举即可
		case 5: {
			for (d1 = 1; d1 <= 9; d1 += 2) {// 只有奇数才会是素数 d1既是首位也是末位,所以d1每次+2枚举即可
				for (d2 = 0; d2 <= 9; d2++) {
					for (d3 = 0; d3 <= 9; d3++) {
						t = 10000 * d1 + 1000 * d2 + 100 * d3 + 10 * d2 + d1;//制造回文
						if ((isp(t) && t >= n && t <= m))cout << t << endl;//在区间范围内就输出
					}
				}
			}
			break;
		}
		case 7: {//同理
			for (d1 = 1; d1 <= 9; d1 += 2) { 
				for (d2 = 0; d2 <= 9; d2++) {
					for (d3 = 0; d3 <= 9; d3++) {
						for (d4 = 0; d4 <= 9; d4++) {
							t = 1000000 * d1 + 100000 * d2 + 10000 * d3 + 1000 * d4 + 100 * d3 + 10 * d2 + d1;
							if ((isp(t) && t >= n && t <= m))cout << t << endl;
						}
					}
				}
			}
			break;
		}
		default: {
				break;
			}
		}
	}
	return 0;
}

### 回答1: 题目描述: 给定一个整数 $N$,求出大于 $N$ 的最小的既是质数又是回文数的数。 回文数指的是正着读和倒着读都一样的数字,例如 12321 就是一个回文数。 输入格式: 输入共 1 行,包含一个整数 $N$。 输出格式: 输出共 1 行,包含一个整数,表示题目所求的数。 数据范围: $1≤N≤10^7$ 样例: 输入: 31 输出: 101 解题思路: 从 $N$ 开始遍历,判断每一个数是否既是质数又是回文数。如果找到了这样的数,直接输出即可。 判断是否为质数可以用较为简单的暴力算法,枚举 $2$ 到 $\sqrt{x}$ 之的所有数,看是否存在约数。 判断是否为回文数可以将该数转化为字符串,然后比较正序字符串和倒序字符串是否相等即可。 注意,本题所求的数可能非常大,需要使用 long long 类型存储,并且需要使用快速幂算法来快速计算幂次。同时,因为奇数位的回文数一定不是 11 的倍数,因此可以只枚举奇数位的回文数。 ### 回答2: 题目要求找出范围在2到N(包括2和N)之回文质数。所谓回文质数是指既是质数又是回文数的数。质数是指除了1和自身以外没有其他因数的正整数。 首先,我们先定义两个函数:一个是用来判断一个数是否为质数的函数is_prime,另一个是用来判断一个数是否为回文数的函数is_palindrome。 is_prime函数的实现方法如下:从2到该数的平方根进行遍历,判断是否存在该数的因数,如果存在则返回False,代表不是质数,如果遍历结束都没有找到因数,则返回True,代表是质数。 is_palindrome函数的实现方法如下:将该数字转化为字符串,并判断该字符串与其翻转后的字符串是否相等,如果相等则返回True,代表是回文数,否则返回False,代表不是回文数。 接下来,我们在范围从2到N进行遍历,对每个数字都进行is_prime和is_palindrome的判断,如果都满足条件,则将该数字输出。 下面是代码实现的伪代码: ``` function is_prime(num): if num < 2: return False for i in range(2, int(num**0.5)+1): if num % i == 0: return False return True function is_palindrome(num): num_str = str(num) if num_str == num_str[::-1]: return True return False function prime_palindromes(N): for num in range(2, N+1): if is_prime(num) and is_palindrome(num): print(num) ``` 以上是本题的解题思路和伪代码实现,希望能对你有所帮助。 ### 回答3: 题目要求找出所有小于等于N的回文质数回文数是指正读反读都相同的数,例如121、12321都是回文数。质数是只能被1和自身整除的数,例如2、3、5、7都是质数。 首先,我们可以编一个函数来判断一个数是否为质数。函数的输入是一个正整数n,判断n是否能被小于n的所有数整除,如果能则返回False,否则返回True。 接下来,我们可以编一个函数来判断一个数是否为回文数。函数的输入是一个正整数n,将n转换成字符串并反转,然后与原字符串进行比较,如果相同则返回True,否则返回False。 在主函数中,我们可以遍历1到N之的所有数,对于每个数,首先判断是否为回文数,如果不是则跳过;然后判断是否为质数,如果是则输出该数。 最后,我们可以将上述步骤封装成一个循环,将N从2逐渐增加,直到N超过题目要求的上限。 以下是代码实现: def is_prime(n): for i in range(2, n): if n % i == 0: return False return True def is_palindrome(n): s = str(n) if s == s[::-1]: return True return False N = int(input()) for n in range(2, N + 1): if is_palindrome(n) and is_prime(n): print(n) 希望能够帮助你解答问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Prudento

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值