蓝桥杯 算法提高 最大连续子段和 C++ dp/动态规划

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述

  给出一个长为n的数列,a1,a2,……,an,求和最大的连续子序列,即找到一对(i,j),i<=j,使ai+ai+1+……+aj的和最大,输出这个和

输入格式

  第一行为正整数n

  第二行n个用空格分开的整数

  表示a1,a2,……,an

输出格式

  一个整数,表示最大连续子序列的和

样例输入

3

-1 -2 -3

样例输出

-1

数据规模和约定

  1<=n<=10^5,-10^5<=ai<=10^5

思路

法一:

dp[i]表示第1到第i个数中的最大连续子序列段的和。(不一定以i结尾,而是指i之前的所有可能数段中的最大数段和)

当我们已知dp[i-1]时,如何求dp[i]?我们应该看dp[i-1]+a[i]和a[i]的大小关系。即a[i]是加入dp[i-1]连续子序列中还是重新开始另一段子序列。

即dp[i]=max(dp[i-1]+a[i],a[i])。

Code

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+5;
int a[N], dp[N] ,n;
int maxn = -1e6;
int main()
{
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) 
		scanf("%d", &a[i]);
	
	for (int i = 1; i <= n; i++) {
		dp[i] = max(dp[i - 1] + a[i], a[i]);
		maxn = max(maxn, dp[i]);
	}
	printf("%d", maxn);
}

 法二:

sum为某一段和,sum从0号开始向前,遇到一个数字,若该数字加起来不会让sum变成负数,则加上它,若加起来变成负数的话,就丢掉前面所有的数字,置为0,用maxn记录sum出现过最大的数字即可。

#include<bits/stdc++.h>
using namespace std;
int main() {
    int n, a[100005] = {0}, sum = 0, maxn = 0;
    scanf("%d", &n);
    for (int i = 0; i <= n; i++) {
        scanf("%d", &a[i]);
        if (sum + a[i] >= 0) sum = sum + a[i];
        else sum = 0;
        maxn = max(maxn, sum);
    }
    printf("%d",maxn);
    return 0;
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Prudento

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值