最大子段和问题——详解(C++)

最大子段和或称为最大部分和(maximum subtotal)问题,以下简称MS。

  • MS:给定一类特定的数据类型的序列:[x1,x2,x3,x4,x5,x6],从该序列截取一段连续的子序列,如果这个子序列和满足整个序列的任意序列的最大值,我们称之为最大子段和。

     Sample:sequence:{6, -3, -4, 7, -1, 5, -3, -4, 8, -2};
     
     subSequence:6 -3、 -1 5 -3等;
     
     MS:7 -1 5 -3 -4 8
    

举例说明
例如:
在这里插入图片描述则其最大字段和为:3+(−2)+5=6

暴力破解(Brute Force):
可以从串的任意位置开始在连续的任意位置结束,一层循环控制起始位置,一层循环控制结束位置。

复杂度:O(n^2)

//迭代
#include<iostream>
#include<algorithm>

using namespace std;

const int MaxNum = 100001;
const int MinINF = -1000003;
int numn;
int sequence[MaxNum];

int main()
{
	while(cin>>numn)
	{
		sequence[0] = MinINF;
		for(int i = 1; i <= numn; ++i)
		{
			cin>>sequence[i];
		}
		for(int i = 1; i <= numn; ++i)
		{
			int temporary = 0;
			for(int j = i; j <= numn; ++j)
			{
				temporary += sequence[j];
				sequence[0] = max(sequence[0], temporary);
			}
		}
		cout<<sequence[0]<<endl;
	}
    return 0;
}

动态规划(Dynamic Programming):

  • 有暴力破解我们可以得到j这层循环本质是在求解当前位置开头的所有前缀最大和;
  • 子序列递增具备连续性质
  • 定义:dp[i]为能连续并到我当前位置的最大和:

令b[j]表示以位置 j 为终点的所有子区间中和最大的一个
子问题:如j为终点的最大子区间包含了位置j-1,则以j-1为终点的最大子区间必然包括在其中
如果dp[j-1] >0, 那么显然dp[j] = dp[j-1] + seq[j],用之前最大的一个加上a[j]即可,因为seq[j]必须包含
如果dp[j-1]<=0,那么dp[j] = seq[j] ,因为既然最大,前面的负数必然不能使你更大
对于这种子问题结构和最优化问题的证明,可以参考算法导论上的“剪切法”,即如果不包括子问题的最优解,把你假设的解粘帖上去,会得出子问题的最优化矛盾.证明如下:

令seq[x,y]表示seq[x]+…+seq[y] , y>=x
假设以j为终点的最大子区间 [s, j] 包含了j-1这个位置,以j-1为终点的最大子区间[ r, j-1]并不包含其中
即假设[r,j-1]不是[s,j]的子区间
存在s使得seq[s, j-1]+a[j]为以j为终点的最大子段和,这里的 r != s
由于[r, j -1]是最优解, 所以a[s,j-1]

得到状态转移方程:dp[i] = max(seq[i], dp[i-1]+seq[i]) | 1 <= j <= n && dp[i] >= 0;

seq[i] | dp[i] < 0;

例如,若a序列为(-2,11,-4,13,-5,-2),dp[0]=0,求其他元素如下:

(1)dp[1]=max{dp[0]+(-2),-2}=max{-2,-2}=-2

(2)dp[2]=max{dp[1]+11,11}=max{9,11}=11

(3)dp[3]=max{dp[2]+(-4),-4}=max{7,-4}=7

(4)dp[4]=max{dp[3]+13,13}=max{20,13}=20

(5)dp[5]=max{dp[4]+(-5),-5}=max{15,-5}=15

(6)dp[6]=max{dp[5]+(-2),-2}=max{13,-2}=13

其中,dp[4]=20为最大值,向前找到dp[1]小于等于0,所以由a2~a4的元素即(11,-4,13)构成最大子段和,其和为20

复杂度:O(n),由上式可以看出,如果dp[i]为负数,就没有在赋能的意义了,所以dp[i]数组可以不需要,空间复杂度:S(1)。

#include<iostream>
#include<algorithm>

using namespace std;

const int MinINF = -1000003;

int numn;
int maxnum;

int main()
{
	while(cin>>numn)
	{
		maxnum = MinINF;
		int temporary;
		int tempsum = 0;
		for(int i = 1; i <= numn; ++i)
		{
			cin>>temporary;
			if(tempsum >= 0)
			{
				tempsum += temporary;
			}
			if(tempsum < 0)
			{
				tempsum = temporary;
			}
			maxnum = max(maxnum, tempsum);
		}
		cout<<maxnum<<endl;
	}
	return 0;
}

分治(Divide and conquer):
产生最大子段和可以由三种情况得出:

  • 1)最大的子段和在序列的左边
  • 2)最大的子段和在序列的右边
  • 3)最大的子段和等于左边加右边

hint:合并的过程要是连续的

复杂度:T(n) = 2T(n/2) + O(n);即:O(nlgn)

#include<iostream>
#include<algorithm>

using namespace std;

const int MaxNum = 100001;
const int MinINF = -1000003;
int numn;
int sequence[MaxNum];

int MergeMax(int x, int y, int z)
{
	x = x > y ? x : y;
	x = x > z ? x : z;
	return x;
}

int MaxSum(int left, int right)
{
	int sum = 0;
	if(left == right)
	{
		return sequence[left] >= 0 ? sequence[left] : 0;
	}
	else
	{
		int mid = (right+left)/2;
		int leftsum = MaxSum(left, mid);
		int rightsum = MaxSum(mid+1, right);
	
		int maxnum1 = MinINF;
		int tempsum1 = 0;
		for(int i = mid; i >= left; --i)
		{
			tempsum1 += sequence[i];
			if(tempsum1 > maxnum1)
				maxnum1 = tempsum1;
		}
	
		int maxnum2 = MinINF;
		int tempsum2 = 0;	
		for(int i = mid+1; i <= right; ++i)
		{
			tempsum2 += sequence[i];
			if( tempsum2> tempsum2)
				maxnum2 = tempsum2;
		}
	
		sum = maxnum1+maxnum2;
		sum = MergeMax(sum, leftsum, rightsum);
	}	
	return sum;
}

int main()
{
	while(cin>>numn)
	{
		for(int i = 0; i < numn; ++i)
		{
			cin>>sequence[i];
		}
		cout<<MaxSum(0, numn)<<endl;
	}
	return 0;
}

最大子矩阵和(Maximum subMatrix)问题:对最大子段和的升维

问题大意:给定一个矩阵,求最大值子矩阵。

我们可以对矩阵向下叠加转化为最子段和问题,即当前点为末位边角元素所有矩阵的最大和:这样就可以对行不断向下叠加操作行次求解子段最大和便得到结果。

//poj1050为例
#include<iostream>
#include<algorithm>
#include<string.h>

const int MaxNum = 101;
const int MinINF = -100003;

int dp[MaxNum];
int matrix[MaxNum][MaxNum];
int numn;
int maxnum;

using namespace std;

int main()
{
	while(cin>>numn)
	{
		for(int i = 0; i < numn; ++i)
			for(int j = 0; j < numn; ++j)
				cin>>matrix[i][j];
		maxnum = MinINF;
		for(int i = 0; i < numn; ++i)
		{
			memset(dp, 0, sizeof(dp));
			for(int j = i; j < numn; ++j)
			{
				int tempsum = 0;
				for(int k = 0; k < numn; ++k)
				{
					dp[k] += matrix[j][k];
					if(tempsum >= 0)
					{
						tempsum += dp[k];
					}
					if(tempsum < 0)
					{
						tempsum = dp[k];
					}
					maxnum = max(maxnum, tempsum);
				}
			}
		}
		cout<<maxnum<<endl;
	}
	return 0;
}
  • 3
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 最大子段和问题是指在一个数列中找到一个连续的子序列,使得该子序列的和最大。分治递归法是一种解决该问题的方法。 具体步骤如下: 1. 将原数列分成两个子序列,分别求出左子序列的最大子段和、右子序列的最大子段和和跨越中点的最大子段和。 2. 左子序列的最大子段和、右子序列的最大子段和和跨越中点的最大子段和中的最大值即为当前序列的最大子段和。 3. 递归地对左子序列和右子序列进行上述操作,直到序列长度为1。 4. 最终得到的最大子段和即为原数列的最大子段和。 该方法的时间复杂度为O(nlogn),比暴力枚举法的O(n^2)更优。 ### 回答2: 最大子段和问题是一个经典的计算机算法问题,它的目标是在一个包含正、负数的数组中找到一个连续子数组,使得该子数组的元素之和最大。在进行优化问题时,可以通过分治递归法来解决。顺序表应用7:最大子段和之分治递归法,就是利用递归方法来解决最大子段和问题最大子段和之分治递归法的核心思想是将问题分解成小问题进行解决。具体来说,将整个数组一分为二,分别求出左、右子数组的最大子段和,然后求出跨越中点的最大子段和。最后,取这三个值中的最大值作为整个数组的最大子段和。 对于左、右子数组,采用同样的方法进行分治递归,直到只剩下一个元素,此时的最大子段和就是该元素本身。而对于跨越中点的最大子段和,需要从中点向左、向右分别寻找最大和,再将左右的最大和相加得到横跨中点的最大和。 最后,将左、右、中三个元素的最大值返回,逐层向上求解,得到整个数组的最大子段和。这个算法的时间复杂度为O(nlogn),空间复杂度为O(logn)。 最大子段和问题是实际问题中非常常见的问题,比如在股票分析、金融风险评估等领域都有它的应用。通过学习分治递归法解决最大子段和问题,可以更好地理解递归思想,并且为实际问题提供解决思路。 ### 回答3: 最大子段和问题是计算一个给定序列中最大的子序列之和的问题。这个问题可以使用分治算法来解决。 首先,假设我们要求一个序列的最大子段和。我们可以将这个序列分成两个部分:前半部分和后半部分。然后我们可以再对这两个部分分别求出最大子段和。 接下来,我们需要考虑一个跨过中点的最大子段和。这个最大子段和可以通过计算左半部分的最大后缀和和右半部分的最大前缀和来确定。我们可以将这两个值相加,得到跨越中点的最大子段和。 最后,我们选择这三个值中的最大值。这个最大值就是整个序列的最大子段和。 我们可以用分治算法的递归方式来实现这个方法。对于每个子序列,我们递归地计算左半部分的最大子段和、右半部分的最大子段和和跨越中点的最大子段和。最后,我们选择三个值中的最大值作为整个序列的最大子段和。 虽然这个方法看起来比暴力解决方案要更复杂,但它的时间复杂度为O(n log n),比暴力解决方案的O(n^2)要快得多。因此,分治算法是一种有效的解决最大子段和问题的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩波的笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值