资源限制
内存限制:256.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s
问题描述
糖果店的老板一共有 M 种口味的糖果出售。为了方便描述,我们将 M 种口味编号 1 ∼ M。
小明希望能品尝到所有口味的糖果。遗憾的是老板并不单独出售糖果,而是 K 颗一包整包出售。
幸好糖果包装上注明了其中 K 颗糖果的口味,所以小明可以在买之前就知道每包内的糖果口味。
给定 N 包糖果,请你计算小明最少买几包,就可以品尝到所有口味的糖
果。
输入格式
第一行包含三个整数 N、M 和 K。
接下来 N 行每行 K 这整数 T₁, T₂, · · · , TK,代表一包糖果的口味。
输出格式
一个整数表示答案。如果小明无法品尝所有口味,输出 −1。
样例输入
6 5 3
1 1 2
1 2 3
1 1 3
2 3 5
5 4 2
5 1 2
样例输出
2
评测用例规模与约定
对于 30% 的评测用例,1 ≤ N ≤ 20 。
对于所有评测样例,1 ≤ N ≤ 100,1 ≤ M ≤ 20,1 ≤ K ≤ 20,1 ≤ Ti ≤ M。
思路
看到m的数据范围,第一反应这是很明显的状压dp或者暴搜。然而我却首先尝试了暴搜,只过了一个点其他点全超时了......
所以还是状压dp方便和容易理解。
而了解状压dp需要有一些位运算基础。可以戳这里了解。
暴搜10分代码
Code
#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int a[30];//a[i]记录第i包糖的糖种类情况
int b[30];
bool buy[30];
int max1,flag=1,cnt=0x3f3f3f,s;
void setbit(int &x,int y){
x|=1<<(y-1);//有第3种糖果,y=3
//1<<(3-1)后,变成比特位除了第3位是1外其他位都为0
//而|0是不变的,|1则变1
}
int getbit(int &x,int y){//获得x的第y个比特位 此函数此处没用,反正当时一口气就打完暴搜代码了没管那么多...
return (x>>(y-1)&1);//如110 获得第二位,右移2-1位置,变101,再&1
//&1其他位都为0,最后一位若是1则结果为1,否装为0。
}
void dfs(int x,int y,int now,int ts){//打算买x包,y是买的上一包的编号,现在已经尝试买了now包 ,现在的状态是ts
if(now>=cnt)return ;
if(now==x&&ts!=s)return ;
if(ts==s){//k达到全集
cnt=min(cnt,now);
return ;
}
for(int i=1;i<=n;i++){
if(!buy[i]){//没买过
buy[i]=1;
dfs(x,i,now+1,a[i]|ts);
buy[i]=0;
}
}
}
int main(){
int t=0;
scanf("%d%d%d",&n,&m,&k);
s=(1<<m)-1;//全集
for(int i=1;i<=n;i++){
for(int j=1;j<=k;j++){
scanf("%d",&t);
if(!(a[i]&(1<<(t-1))))//如果此类糖果第i包还没有
setbit(a[i],t);//相应比特位设为1
}
}//初始化各包糖果的情况
max1=__builtin_popcount(a[1]);//获得二进制中1的个数
for(int i=2;i<=n;i++){//先查找出存在糖果数量最多的
if(__builtin_popcount(a[i])>flag){
max1=__builtin_popcount(a[i]);
flag=i;
}
}
if(max1==m){
printf("1");
exit(0);
}
for(int i=1;i <=n;i++){
for(int j=2;j<=n;j++){//枚举买的包数
buy[i]=1;
dfs(j,i,1,a[i]);//买j包,当前买了1包 即第i包
buy[i]=0;
}
}
if(cnt!=0x3f3f3f)printf("%d",cnt);
else printf("-1");
return 0;
}
状压dpAC代码
Code
#include <bits/stdc++.h>
using namespace std;
const int N=105,M=(1<<20)+10;
int n,m,k,x,a[N],dp[M];
// dp[i]表示组成i状态的所需的最小包数
int main()
{
cin>>n>>m>>k;
memset(dp,-1,sizeof(dp));
for(int i=1;i<=n;i++)
{
int s=0;
for(int j=1;j<=k;j++)
{
cin>>x;
s|=(1<<(x-1)); //因为|0不变,|1变1,所以此循环下来,s有糖果的对应比特位为1
}
dp[s]=1;//表示此状态只需要此包便可
a[i]=s;//第i包的状态是s
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<(1<<m);j++) // 枚举m个糖果是否被取的所有状态 即0~(1<<m)-1
{
if(dp[j]==-1)continue;//若此状态未被初始化过,则说明不能一包到达此状态
int to=j|a[i]; // 若能取,则下一状态为to
if(dp[to]!=-1) // 之前达到过dp[to]
{
dp[to]=min(dp[to],dp[j]+1);
}
else
{
dp[to]=dp[j]+1;
}
}
}
printf("%d\n",dp[(1<<m)-1]); // 糖果全取的状态为(1<<m)-1,即全为1的二进制数,长度为m
return 0;
}