02-线性结构2 一元多项式的乘法与加法运算(20 分)
设计函数分别求两个一元多项式的乘积与和。
输入格式:
输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。
输出格式:
输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0
。
输入样例:
4 3 4 -5 2 6 1 -2 0
3 5 20 -7 4 3 1
输出样例:
15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 1
5 20 -4 4 -5 2 9 1 -2 0
#include <stdio.h>
#include <string.h>
#include <math.h>
int a[2000],b[2000],ans[3000];
int na,nb;
//加法函数
void addP(){
memset(ans,0,sizeof(ans));
int i;
int t = 0;
for(i = 0; i <= 1005; i++){
ans[i] = a[i]+b[i];//数组直接相加即可
if(ans[i]!=0)t++;//统计不为零的个数
}
if(t==0){
printf("0 0\n");//零多项式特例
return ;
}
int flag = 0;
for(i = 1005; i >=0; i--){
if(ans[i]!=0){//不为零输出
if(!flag){
printf("%d %d",ans[i],i);
flag = 1;
}
else
printf(" %d %d",ans[i],i);
}
}
putchar('\n');
return ;
}
//乘法函数
void multiP(){
memset(ans,0,sizeof(ans));
int i,j;
int t = 0;
for(i = 0; i < 1005; i++){
if(a[i]!=0){
for(j = 0; j < 1005; j++){
if(b[j]!=0){
ans[i+j] += a[i]*b[j]; //直接遍历即可,注意这里是+=不能是=,因为后面相乘可能出现同指数的不能覆盖只能相加
if(ans[i+j]!=0)t++;//同理
}
}
}
}
if(t==0){
printf("0 0\n");
return ;//零多项式特例
}
int flag = 0;
for(i = 2005; i >=0; i--){
if(ans[i]!=0){//不为零输出
if(!flag){
printf("%d %d",ans[i],i);
flag = 1;
}
else
printf(" %d %d",ans[i],i);
}
}
putchar('\n');
return ;
}
int main(){
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
scanf("%d",&na);
int i;
int index,value;
for(i = 0; i < na; i++){
scanf("%d%d",&value,&index);
a[index] = value;
}
scanf("%d",&nb);
for(i = 0; i < nb; i++){
scanf("%d%d",&value,&index);
b[index] = value;
}//读入数据,因为数据量较小,以数组的下标作为指数,数组值为系数
//乘法:
multiP();
//加法:
addP();
return 0;
}