题目
请你帮忙给从 1 到 n 的数设计排列方案,使得所有的「质数」都应该被放在「质数索引」(索引从 1 开始)上;你需要返回可能的方案总数。
让我们一起来回顾一下「质数」:质数一定是大于 1 的,并且不能用两个小于它的正整数的乘积来表示。
由于答案可能会很大,所以请你返回答案 模 mod 10^9 + 7 之后的结果即可。
示例 1:
输入:n = 5
输出:12
解释:举个例子,[1,2,5,4,3] 是一个有效的排列,但 [5,2,3,4,1] 不是,因为在第二种情况里质数 5 被错误地放在索引为 1 的位置上。
示例 2:
输入:n = 100
输出:682289015
提示:
1 <= n <= 100
代码
package dayLeetCode;
public class dayleetcode1175 {
int mod = 1000000007;
// 求有多少个质数,然后将质数和合数全排列即可
public int numPrimeArrangements(int n) {
int numPrimes = 0;
for (int i = 1; i <= n; i++){
if (isPrime(i)){
numPrimes++;
}
}
return (int)(f(numPrimes) % mod* f(n - numPrimes) % mod) % mod;
}
// 判断是否是质数
private boolean isPrime(int k) {
if (k == 1){
return false;
}
for (int i = 2; i * i <= k; i++){
if (k % i == 0){
return false;
}
}
return true;
}
// 求阶乘
long f(int k){
long ans = 1;
for (int i = 1; i <= k; i++){
ans *= i;
ans %= mod;
}
return ans;
}
public static void main(String[] args) {
dayleetcode1175 obj = new dayleetcode1175();
System.out.println(obj.numPrimeArrangements(100));
}
}