题目:
桌子上有 n 个球,每个球的颜色不是黑色,就是白色。
给你一个长度为 n 、下标从 0 开始的二进制字符串 s,其中 1 和 0 分别代表黑色和白色的球。
在每一步中,你可以选择两个相邻的球并交换它们。
返回「将所有黑色球都移到右侧,所有白色球都移到左侧所需的 最小步数」。
示例 1:
输入:s = “101”
输出:1
解释:我们可以按以下方式将所有黑色球移到右侧:
- 交换 s[0] 和 s[1],s = “011”。
最开始,1 没有都在右侧,需要至少 1 步将其移到右侧。
示例 2:
输入:s = “100”
输出:2
解释:我们可以按以下方式将所有黑色球移到右侧:
- 交换 s[0] 和 s[1],s = “010”。
- 交换 s[1] 和 s[2],s = “001”。
可以证明所需的最小步数为 2 。
示例 3:
输入:s = “0111”
输出:0
解释:所有黑色球都已经在右侧。
提示:
1 <= n == s.length <= 105
s[i] 不是 ‘0’,就是 ‘1’。
思路:
通过读题+案例不难发现,我们只要每次都将当前遇到0移动到最左端,即移动后的0左边不存在1,即不存在黑球即可,转化下思想,则是:即判断每个白球左边有几个黑球,将其加起来即为最小步数。
代码:
class Solution {
// 每次都将当前遇到0移动到最左端,即移动后的0左边不存在1,即不存在黑球
// 转化思想:即判断每个白球左边有几个黑球,将其加起来即为最小步数
public long minimumSteps(String s) {
int n = s.length();
long ans = 0;
long k = 0;
for(int i = 0; i < n; i++){
// 统计当前位置左边有几个黑球
if(s.charAt(i) == '1'){
k++;
continue;
}
ans += k;
}
return ans;
}
}