斐波那契数列解法

斐波那契数列传说起源于一对非常会生的兔子。定义:


这个数列有很多奇妙的性质(比如 F(n+1)/F(n) 的极限是黄金分割率)

解法一:递归

这是最最最直观的想法,是每个人都能编写的简单程序,优点是非常明显的:简单易懂,清晰明了。但是缺点就是效率非常低,时间复杂度是指数级的。举个例子,比如要计算F(5),那么就要就算F(4)+F(3),而在计算F(4)的时候又要计算F(3),导致了 F(3)的重复计算,如果n越来越大,重复的计算量是无比巨大的,这就是瓶颈所在。

代码:

[cpp]  view plain  copy
  1. int F(int n)  
  2. {  
  3.     if(n <= 0)  
  4.         return 0;  
  5.     else if(n == 1)   
  6.         return 1;  
  7.     else  
  8.         return F(n-1) + F(n-2);  
  9. }  

那么怎么克服这个问题?这就引出了解法二。


解法二:动态规划

解法一的缺点是因为重复计算,那么我们只需要把一些已经计算过的答案存放起来,那这个缺点就解决了。我们用一维数组来实现,比如 F(5)就存放在数组下标为5的数据单元里。

代码:

[cpp]  view plain  copy
  1. #include<iostream>  
  2. using namespace std;  
  3. int F(int n)  
  4. {  
  5.     if(n<=0)  
  6.         return 0;  
  7.     if(n==1)  
  8.         return 1;  
  9.     int* ans = new int[n+1];  
  10.     ans[0] = 0;  
  11.     ans[1] = 1;  
  12.   
  13.     for(int i=2; i<=n; i++)  
  14.         ans[i] = ans[i-1] + ans[i-2];  
  15.       
  16.     int tmp = ans[n];  
  17.     delete[] ans;  
  18.     return tmp;  
  19. }  

这个算法的时间复杂度是 O(n),空间复杂度也是O(n)。复杂度来到了线性,这是我们所高兴的,但是,是否还有比线性更好的复杂度?

解法三:求解通项公式

如果我们知道了通项公式,那么我们就能在 O(1)的时间内得到F(n)。这是一个完美的时间复杂度。

这里只介绍一种求解通项公式的技巧——矩阵。矩阵作为一个强大的数学工具有太多不为人知的应用。当然还有其它方法,比如高中数学竞赛里面的特征方程,有兴趣的读者可以自行搜索一下。

我们很容易发现:

所以剩下的问题就是只要求出了就求出了F(n)。

求这个矩阵的 n次方的解法也有很多,这里介绍一种方法——相似对角化。

于是

上述方程的解为

 

于是解得

 的基础解系为

的基础解系为

所以令

 

我们有:

所以,

 

两边取n次方,我们得到:

最后,做矩阵运算(实际上我们只需要 An 里左下角的数据),便可以得到:

通项公式的计算就完成了。(推导过程需线性代数基础)

时间复杂度是完美了,那么有没有缺点呢?当然有,公式里引入了无理数,所以不能保证运算结果的精度。

解法四:分治

解法三的缺点是精度无法保证,那么我们自然就想到,然计算机自己去计算,进行n-1次矩阵乘法不就行了。这是最直观的想法,虽然是线性的,但复杂度还是不令人满意,有没有更好的复杂度?比如 log2 (n)?答案是有的。

先来看一个背景知识:一个十进制正数 n的用二进制表示要用floor( log2(n) )+1 位。(floor(x)返回不大于 x的最大整数)

用二进制方式表示 n

所以

如果能得到的值就可以经过 log2 (n)次乘法得到

显然可以通过递推得到:

代码:

[cpp]  view plain  copy
  1. Class Matrix;   //假设已经实现了矩阵类  
  2.   
  3. Matrix MatrixPow(const Matrix &m, int n)    //计算m的n次方  
  4. {  
  5.     Matrix result = Matrix::identity;   //单位矩阵  
  6.     Matrix tmp = m;  
  7.     for(; n; n >>= 1)  
  8.     {  
  9.         if(n & 1)  
  10.             result *= tmp;  
  11.         tmp *= tmp;  
  12.     }  
  13. }  
  14.   
  15.   
  16. int F(int n)  
  17. {  
  18.     Matrix an = MatrixPow(A, n);  
  19.     return F1*an(1,0) + F0*an(1,1);     //an(1,0)表示an的第1行第0列的元素  
  20. }  

时间复杂度仅为O(log2 (n))。

解法五:矩阵乘法+空间换时间

         减少乘法,取模运算

         数列的递推公式为:f(1)=1,f(2)=2,f(n)=f(n-1)+f(n-2)(n>=3)

   用矩阵表示为:

  进一步,可以得出直接推导公式:

   由于矩阵乘法满足结合律,在程序中可以事先给定矩阵的64,32,16,8,4,2,1次方,加快程序的执行时间。(有些题目需要取模运算,也可以事先进行一下)。给定的矩阵次幂,与二进制有关是因为,如下的公式存在解满足Xi={01}: 

 

为了保证解满足 Xi={0或1},对上述公式的求解从右向左,即求解顺序为Xn,Xn-1,Xn-2,....,X1,X0。

  完整代码实现如下:

复制代码
///求解fac(n)%100000,其中n为大于等于3的正整数
#include<stdio.h>
#include<math.h>
long long fac_tmp[6][4]={   ///存放矩阵次幂
                    ///位置:00 01 10 11
                   {24578,78309,78309,46269},   ///32次幂%100000
                   {1597,987,987,610},  ///16次幂%100000
                   {34,21,21,13},   ///8次幂%100000
                   {5,3,3,2},   ///4次幂%100000
                   {2,1,1,1},   ///2次幂%100000
                   {1,1,1,0},   ///1次幂%100000
                   };
void fac(int);

int main()
{
    int n;
    scanf("%d",&n);
    fac(n);
    return 1;
}

void fac(int k) ///k>=3
{
    int i;
    long long t00=1,t01=1,t10=1,t11=0;  ///表示矩阵的1次幂
    long long a,b,c,d;
    k=k-3;  ///公式中是n-2次幂,(t00,t01,t10,t11)表示1次幂。所以一共减3次
    for(i=k;i>=32;i=i-32)   ///对于大于等于32的k;
    {
        a=(t00*fac_tmp[0][0]+t01*fac_tmp[0][2])%100000;
        b=(t00*fac_tmp[0][1]+t01*fac_tmp[0][3])%100000;
        c=(t10*fac_tmp[0][0]+t11*fac_tmp[0][2])%100000;
        d=(t10*fac_tmp[0][1]+t11*fac_tmp[0][3])%100000;
        t00=a;  t01=b;  t10=c;t11=d;
    }

    i=4;
    while(i>=0)    ///对于小于32的k(16,8,4,2,1);
    {
        if(k>=(long long)pow(2,i))  ///如果k大于某一个2的次幂
        {

            a=(t00*fac_tmp[5-i][0]+t01*fac_tmp[5-i][2])%100000; ///(5-i):矩阵的2的i次幂在数组fac_tmp中的位置为fac_tmp[5-i]
            b=(t00*fac_tmp[5-i][1]+t01*fac_tmp[5-i][3])%100000;
            c=(t10*fac_tmp[5-i][0]+t11*fac_tmp[5-i][2])%100000;
            d=(t10*fac_tmp[5-i][1]+t11*fac_tmp[5-i][3])%100000;
            t00=a;  t01=b;  t10=c;t11=d;
            k=k-(int)pow(2,i);
        }
        i--;
    }

    a=(t00*2+t01*1)%100000;
    printf("%lld\n",a);
}
复制代码



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值