DeepSeek总是崩?教你本地部署离线DeepSeek R1,保姆级教程

最近DeepSeek由于受到大量DDOS攻击,加上访问过热,总是会出现服务器繁忙、无法加载的情况,于是乎我测试在本地电脑部署DeepSeek R1模型,居然测试成功了,而且速度并不比APP慢。

下面会讲到部署本地LLM(大模型)需要的软件,以及相应的电脑配置,这里以DeepSeeK R1各种版本为例。

软件配置

我选择了Ollama作为本地运行LLM的工具,这是一个非常出名的开源软件,Github上有12万Star,主要用来在本地电脑设备下载、部署和使用LLM。

Ollama提供了丰富的LLM库用于下载,比如llama、qwen、mistral以及这次要使用的deepseek r1,而且有不同的参数规模用于选择,适配不同性能的电脑设备。

Ollama虽然支持直接使用LLM,但是仅能在命令行来对话,交互功能不尽人意,所以我会使用Cherry-studio来作为前端交互,以Ollama作为后台,来和LLM对话,这就和日常使用的DeepSeek APP类似了。

Ollama交互界面:

Cherry-studio交互界面:

电脑配置要求

很多人担心在本地部署DeepSeek R1,是不是对电脑性能有很高要求,比如CPU、GPU、内存等。

其实不用担心,不同参数规模的模型对电脑性能要求不一样,部署DeepSeek R1 8B规模以下的模型不需要独显也可以运行。

我部署的是7B模型,电脑系统windows 11,配置CPU Intel® Core™ i7-12650H 2.30 GHz,内存16GB,没有独显。

这里科普下,LLM参数规模是指什么,所谓7B是指该模型大约有 70 亿(7 Billion)个参数,参数代表里模型训练过程中需要学习的数值,参数越多,模型能够理解更复杂的信息,给出的回答也越准确和全面。

以下是基本的要求,可以对号入座。

R1模型版本 CPU GPU 内存 存储
1.5B In
### DeepSeek 搭建教程 #### 准备环境 为了顺利安装和配置DeepSeek,确保计算机满足最低硬件需求,并已安装必要的软件依赖项。对于离线版本R1部署,推荐的操作系统为Linux发行版,如Ubuntu LTS版本[^2]。 #### 下载与安装 获取DeepSeek R1的最新稳定版本可以从官方渠道下载。如果考虑数据隐私问题,建议采用离线包形式进行安装,避免网络传输中的潜在风险。完成下载后,按照提供的说明文档逐步执行安装命令: ```bash tar -zxvf deepseek-r1-offline.tar.gz cd deepseek-r1-offline/ sudo ./install.sh ``` #### 配置本地私有知识库 成功安装之后,下一步就是初始化并设置属于自己的私有知识库。此过程涉及创建数据库结构、导入初始数据集以及定义索引策略等操作。具体来说,可以通过编辑`config.yaml`文件来自定义这些参数,使得最终构建的知识库更贴合实际应用场景的需求[^3]。 #### 启动服务 一切准备就绪后,启动DeepSeek的服务端程序即可开始测试其功能特性。通常情况下,默认监听地址为`http://localhost:8080`,用户可以直接通过浏览器访问管理界面或者利用API接口实现自动化交互流程。另外,为了让对话更加贴近真实场景,还可以引入预训练的语言模型(例如AnythingLLM),从而增强系统的理解和表达能力。 #### 测试验证 最后一步是对整个系统进行全面的功能性和稳定性检测。这不仅限于简单的查询请求响应时间测量,更重要的是要检验当面对复杂多变的任务时能否保持良好的性能表现。同时也要关注资源消耗情况,及时调整优化各项配置选项以达到最佳平衡状态[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱卫军 AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值