说实话,现在跨境电商竞争之激烈,获客之难,早已不是搭个台子就能唱戏的阶段,需要各种竞品数据、用户评价数据监测分析,及时掌握哪些产品卖的好,卖的好的产品标题怎么写、用户情感反馈等等,相当的繁琐。
这个过程看似简单,但仅是数据采集就难倒一大批人,因为像Amazon、Tiktok、eBay、Shopee等反爬机制非常严格,已经从传统的IP识别升级到行为分析和动态对抗,像是浏览器指纹、验证码(CAPTCHA)、动态加密、异步加载等,一般简单的爬虫技术基本不可能抓取到稳定的电商数据。
所以开发者们需要进行技术伪装、动态IP设置和自动化工具等方法,去测试和调整不同平台的规则,但又必须要保证在法律允许的范围之内进行数据采集。
什么是法律允许的范围呢?首先只能抓取互联网上公开的非隐私数据,不要去破解后台加密数据,也不可以获取用户隐私数据。其次只能在网站合理的承受范围发送http请求,不能对目标网站造成破坏。否则,可能会面临法律风险。
这次我准备结合Python selenium + bright data的组合来采集某跨境电商网站上的智能手机商品数据,并结合AI搭建一个电商商品分析系统,用于监测竞品数据。
https://get.brightdata.com/webscra
当然这个仅供参考学习使用。
1、bright data数据采集技术解读
bright data提供包含网页抓取API、网页解锁器API、网页抓取浏览器、SERP API等在内的自动化产品。这些产品能解决什么问题呢?像你在爬虫过程中遇到的人机验证、验证码、动态页面、浏览器指纹验证等问题,这些都有针对性的解决技术。
就拿这次我用的Scraping Browser来举例,Scraping Browser是数据采集浏览器的意思,它是bright data提供的云浏览器,是有图形界面的有头浏览器,托管在亮数据平台上。它的工作原理和普通自动化浏览器一样,能通过Selenium、Playwright等自动化API来操作采集数据,适合交互频繁的动态网页,执行各种点击、加载等操作。
但是Scraping Browser封装了代理和网站解锁能力,能进行各种高级爬虫操作,比如:CAPTCHA 识别、浏览器指纹、自动重试、请求头选择、处理 cookies、JavaScript 渲染等,对于反爬机制复杂的网站非常适用。
2、使用Scraping Browser采集商品数据
首先这次测试的采集目标是某跨境电商网站的智能手机商品数据,基于Scraping Browser服务,使用Python Selenium库来请求和解析数据,Selenium是主流的浏览器自动化工具,也支持其API接口,操作起来比较方便。
第一步:创建通道
打开bright data,然后打开后台控制面板界面,找到“浏览器API“,创建新的通道。
第二步:设置“浏览器API“相关参数
给新通道起一个任务名称,比如ecommerce_task
接着勾选CAPTCHA 解决器,它能帮你自动识别和解锁各种验证码,非常省心。
最后点击添加,即创建了一个新通道ecommerce_task。
新通道会有用户名、密码,以及Selenium对应的端口,要记住和保密。
在操作平台里,你能找示例代码,比如这次用到的Selenium,我们就直接改改示例请求代码用于抓取商品数据。
第三步:编写脚本,采集数据
这次直接抓取某跨境电商网站搜索页的智能手机商品,搜索关键词为:smart phone,采集的字段有:商品名称(name)、商品价格(price)、商品来源地(location),因为是示例爬虫,所以只选重要的的几个字段。
https://get.brightdata.com/webscra
采集好数据后,保存到本地CSV文件中,用于后续分析。
示例代码如下:
# 本案例仅用于技术研究,遵守《网络安全法》第27条与目标网站robots.txt协议,采样频率控制在5次/分钟以下,单日采集量不超过1000条
from selenium.webdriver import Remote, ChromeOptions
from selenium.webdriver.chromium.remote_connection import ChromiumRemoteConnection
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
import csv
# ==== 请替换为你的 Bright Data 授权信息 ====
AUTH = '你的账号接口地址'
SBR_WEBDRIVER = f'https://{AUTH}@brd.superproxy.io:9515'
def main():
print('正在连接Scraping Browser...')
# 建立远程连接
sbr_connection = ChromiumRemoteConnection(SBR_WEBDRIVER, 'goog', 'chrome')
opts = ChromeOptions()
# 可选:开启无头模式
# opts.add_argument('--headless')
with Remote(sbr_connection, options=opts) as driver:
print('已连接! 导航到Shopee...')
# 1)打开 Shopee 手机搜索页
url = 'https://shopee.sg/search?keyword=smart%20phone'
driver.get(url)
# 2)等待商品列表渲染完成:等待每个“商品卡片”出现
wait = WebDriverWait(driver, 80)
item_selector = 'li[data-sqe="item"]'
wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, item_selector)))
# 3)滚动以加载更多(如果需要懒加载,可根据实际情况调整)
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2)
# 4)再一次抓取商品卡片
items = driver.find_elements(By.CSS_SELECTOR, item_selector)
print(f'定位到 {len(items)} 个商品卡片,开始抓取…')
# 5)准备存储结果
results = []
for itm in items:
try:
# 商品名称
name = itm.find_element(By.CSS_SELECTOR, 'div.line-clamp-2').text.strip()
# 价格(带币种符号)
price = itm.find_element(By.CSS_SELECTOR, 'span.font-medium.text-base\\/5').text.strip()
# 商品来源地
location = itm.find_element(By.CSS_SELECTOR, 'span.ml-\[3px\]').text.strip()
except Exception as e:
# 若某个字段缺失则跳过
print(f'⚠️ 解析失败:{e}')
continue
results.append({
'name': name,
'price': price,
'location': location
})
# 6)输出到 CSV
out_file = 'shopee_mobile_phones.csv'
keys = ['name', 'price', 'location']
with open(out_file, 'w', newline='', encoding='utf-8-sig') as f:
writer = csv.DictWriter(f, fieldnames=keys)
writer.writeheader()
for row in results:
writer.writerow(row)
print(f'完成:共抓取 {len(results)} 条,已保存至 {out_file}')
if __name__ == '__main__':
main()
最终采集数据保存到CSV文件中,部分数据如下:
注:name代表商品名称,price是售价(新加坡元)、location是来源地。
该跨境电商网站是对爬虫监测比较严的平台,会要求各种验证,Scraping Browser都能轻松解锁,而且搜索结果页异步加载,部分操作(如翻页)需模拟用户点击,也能一并解决。
3、使用AI搭建跨境电商监测分析系统
采集好商品数据后,接下来把活交给AI,既可以让它分析商品数据给出合理化建议,也可以搭建商品监测分析系统,将采集和数据分析集成到一个平台里。
比如某跨境电商网站手机商品名称的分析优化,把刚爬取的csv数据提交给AI,输入提示:
附件是手机商品数据,包含名称、价格、来源地,请你分析商品名称内容、结构、形式、优化建议等等,输出分析报告。
AI会自动出具一份分析报告。
有核心要素提取:
也有问题和优化建议:
可以看到AI给出的建议非常详细且具有可参考性。
咱们再将这种功能集成到平台里,让AI设计一个采集和分析数据于一体的商品分析平台。
功能如下:
- 1、数据采集模块,集成bright data数据自动化采集功能,自动从shopee采集数据
- 2、竞品动态跟踪模块,自动跟踪某几个核心竞品商品的信息,比如销量、价格、标题等
- 3、价格趋势预测模块,自动监测某品类价格走势,基于AI智能化定义价格
- 4、商品名称优化模块,自动监测分析热门商品名称,基于AI分析优化结果
基于采集到的智能手机商品数据示例,实现的效果如下。