【推荐收藏】5天入门PyTorch?还真有这么一门Courses

640?wx_fmt=png

近期在网路上看到一个深度学习的课程,由dataflowr的一个组织推出的课程

《Hands-on tour to deep learning with PyTorch》

640?wx_fmt=png

主要的学习路径如下:

  • Day 1:

    • (slides) introductory slides

    • (code) a first example on Colab: dogs and cats with VGG

    • (code) making a regression with autograd: intro to pytorch

  • Day 2:

    • (slides) refresher: linear/logistic regressions, classification and PyTorch module.

    • (code) understanding convolutions and your first neural network for a digit recognizer.

    • (slides) embeddings and dataloader

    • (code) Collaborative filtering: matrix factorization and recommender system

    • (slides) Variational Autoencoder by Stéphane

    • (code) AE and VAE

  • Day 3:

    • (slides) Towards deep learning for the real world by Andrei

    • (code) softmax temperature; Mixture Density Networks; Bayes by backpropagation

    • (slides) Generative Adversarial Networks

    • (code) Conditional and Info GANs

  • Day 4:

    • Reccurrent Neural Networks: slides and associated code

    • (code) PyTorch tutorial on char-RNN

    • (code) Word2vec

    • (code) Playing with word embedding

    • Structured Self-attentive Sentence Embedding papercode to obtain Glove NLP mini-project

  • Day 5:

    • (slides) Opening the black box

    • (code) CAM

    • (code) Adversarial examples

    • Graph Neural Networks by Timothée

课程地址:https://mlelarge.github.io/dataflowr-web/cea_edf_inria.html

代码地址:https://github.com/mlelarge/dataflowr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值