风控ML[13] | 特征稳定性指标PSI的原理与代码分享

本文介绍了风控领域的群体稳定性指标PSI,该指标用于评估模型稳定性。PSI值越小表示稳定性越好,常用于建模前变量筛选和模型上线后的监控。文章详细阐述了PSI的概念、生成逻辑,并给出了Python实现示例。
摘要由CSDN通过智能技术生成

36b6a6bef84b239384ec8fce55428672.png

PSI这个指标我们在风控建模前后都是需要密切关注的,这个指标直接反映了模型的稳定性,对于我们评估模型是否需要迭代有着直接的参考意义。今天我将从下面几方面来介绍一下这个指标。

Index

01 PSI的概念
02 PSI的生成逻辑
03 PSI的业务应用
04 PSI的Python实现

01 PSI的概念

PSI全称叫做“Population Stability Index”,中文翻译是群体稳定性指标,从风控应用的角度理解就是分组的测试与跨时间稳定性指标。
在我们建模的时候,数据(变量或者模型分)的分组占比分布是我们的期望值,也就是我们希望在测试数据集里以及未来的数据集里,也能够展示出相似的分组分布,我们称之为稳定
PSI值没有指定的值域,我们需要知道的是值越小越稳定,一般在风控中会拿0.25来作为筛选阈值,即PSI>0.25我们就认定这个变量或者模型不稳定了。好了,那具体PSI怎么计算呢?不急,请接着看下一节。

02 PSI的生成逻辑

按照惯例,我们先把PSI的计算公式放上来:

其中,代表第i组的实际占比(占全部数量),代表第i组的期望占比(也就是训练时或者上线时的分组占比)。我们还是拿之前的《风控ML[5] | WOE前的分箱一定要单调吗》 文章里的数据来举例,具体可以看下面的表:
b82c51092b92cbc1e7640f082a079e4f.png

公式比较简单,在Excel里就可以实现了,结果计算出来PSI为0.018,所以是稳定的。

03 PSI的业务应用

那么有了这个稳定性指标,在具体的风控场景中可以怎么应用呢?我一般会在下面几个场景应用:
1、建模前筛选变量
2、模型上线后监控模型

建模前筛选变量

我们在做评分卡的时候一般都是会选择稳定性比较强的变量,因为模型一般上线后,下一次迭代都要1年后了,所以我们倾向于稳定性强的变量。那一般怎么筛选呢?我们从下面几个步骤来操作:
1)选择训练数据,并且确定变量的最优分箱(具体可以参考上篇关于最优分箱的文章

[1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值