博弈论之SG函数

下面的所有知识均属博弈论范畴。


SG ⁡ \operatorname{SG} SG 函数

Nim ⁡ \operatorname{Nim} Nim 博弈

在介绍 SG ⁡ \operatorname{SG} SG 函数前,我们先介绍一种经典的博弈—— Nim ⁡ \operatorname{Nim} Nim 博弈,并从中获得一定的启发。

  • 问题:有 n n n 堆石子,第 i i i 堆石子里面有 A i A_i Ai 枚石子,每人每次可从任意且至多一堆石子里取出任意多枚石子扔掉,可以取完,不能不取,最后无石子可取的人判负。假如甲是先手,且告诉你这 n n n 堆石子的数量,他想知道是否存在先手必胜的策略。

  • 结论:若 xor ⁡ i = 1 n A i ≠ 0 \operatorname{xor}_{i = 1}^n A_i \ne 0 xori=1nAi=0,先手必胜,否则后手必胜。

我们发现,当甲做完最后一步操作,将所有石子取完时,甲就赢了。此时,说明每堆石子均为 0 0 0 是一个必胜态

所以,甲要进行的操作一定要使得自己最终一定要到达必胜态,并且对方永远不可能到达必胜态

可以发现,如果甲操作后 xor ⁡ i = 1 n A i = 0 \operatorname{xor}_{i = 1}^n A_i = 0 xori=1nAi=0,那么对方操作一次一定会使得 xor ⁡ i = 1 n A i ≠ 0 \operatorname{xor}_{i = 1}^n A_i \ne 0 xori=1nAi=0

所以,甲只要保持自己每次操作后 xor ⁡ i = 1 n A i = 0 \operatorname{xor}_{i = 1}^n A_i = 0 xori=1nAi=0,就会使得对方永远到达不了必胜态,同时若干次操作后甲一定能够到达必胜态(因为石子数只会减少)。

实际上,我们可以称所有 xor ⁡ i = 1 n A i = 0 \operatorname{xor}_{i = 1}^n A_i = 0 xori=1nA

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值