当前的大语言模型主要是预训练大模型,在大规模无监督数据上训练之后,再经过有监督微调和对齐之后就可以完成很多任务。尽管如此,面对垂直领域的应用,大模型依然需要微调才能获得更好地应用结果。而大模型的微调有很多方式,包括指令微调、有监督微调、提示工程等。其中,指令微调(Instruction Tuning)作为改进模型可控性最重要的一类方法,目前并没有很好的资料参。浙江大学研究人员联合Shannon AI等单位发布了一篇最新的关于指令微调的综述,详细描述指令微调的各方面内容。
本文原文来自DataLearner官方博客:https://www.datalearner.com/blog/1051692954155639
-
大模型微调简介
-
指令微调简介
-
指令微调常用的数据集总结
-
不同领域的指令微调
-
高效指令微调技术
大模型微调简介
此前,我们已经介绍了大模型的三类微调技术(实际案例说明AI时代大语言模型三种微调技术的区别——Prompt-Tuning、Instruction-Tuning和Chain-of-Thought:https://www.datalearner.com/blog/1051681306547159)。但实际上,大模型的微调还可以分成很多种。
从微调的参数规模来说,可以简单分为全参数微调和高效参数微调。前者一般是用预训练模型作为初始化权重,在特定数据集上继续训练,全部参数都更新的方法。而后者则是期望用更少的资源完成模型参数的更新,包括只更新一部分参数或者说通过对参数进行某种结构化约束,例如稀疏化或低秩近似来降低微调的参数数量。
如果按照在模型哪个阶段使用微调,或者根据模型微调的目标来区分,也可以从提示微调、指令微调、有监督微调的方式来。本次的综述文章主要就是指令微调的综述。
指令微调简介
指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。
指令微调可以被视为有监督微调(Supervised Fine-Tuning,SFT)的一种特殊形式。但是,它们的目标依然有差别。SFT是一种使用标记数据对预训练模型进行微调的过程,以便模型能够更好地执行特定任务。而指令微调是一种通过在包括(指令,输出)对的数据集上进一步训练大型语言模型(LLMs)的过程,以增强LLMs的能力和可控性。指令微调的特殊之处在于其数据集的结构,即由人类指令和期望的输出组成的配对。这种结构使得指令微调专注于让模型理解和遵循人类指令。
总的来说,指令微调是有监督微调的一种特殊形式,专注于通过理解和遵循人类指令来增强大型语言模型的能力和可控性。虽然它们的目标和方法相似,但指令微调的特殊数据结构和任务关注点使其成为SFT的一个独特子集。
指令微调常用的数据集总结
在这篇综述中,作者总结了25个指令微调数据集。并将指令微调的数据集分为以下三大类:
泛化到未见任务
这类数据集通常包含多样化的任务,每个任务都有专门的指令和数据样例。模型在这类数据集上训练后,可以泛化到未见过的新任务上。
在单轮中遵循用户指令
这类数据集包含指令及其对应的响应,用于训练模型单轮回复用户指令。训练后,模型可以理解指令并作出回复。
像人类一样提供帮助
这类数据集包含多轮闲聊对话。训练后,模型可以进行多轮交互,像人类一样提供帮助。
总体来说,第一类数据集侧重任务泛化能力,第二类侧重单轮指令理解能力,第三类侧重连续多轮对话能力。研究人员可以根据所需的模型能力选择不同类型的数据集进行指令调优。
所有的25个用以大语言模型的指令微调数据集列表如下:
不同领域的指令微调
其实,很多领域都有对大模型做指令微调的需求,但是不同领域的指令微调需求可能也有差异。
这篇综述总共总结了8种不同领域的大模型指令微调情况,如下表所示:
好的,已补全所有8个领域的指令调优对比情况:
高效指令微调技术
高效指令微调技术的主要目的在于可以利用一小部分参数的更新来使得模型达到训练效果。其实与有监督学习里面或者大语言模型里面的高校参数微调基本一致。高效微调技术主要包括如下几类:
总体来说,当前的高效指令调优技术主要是通过参数量减少、梯度压缩、量化等方式来降低计算和内存消耗。这些方法在降低资源占用方面非常有效,但也存在一定的缺点,如精度损失、收敛稳定性等问题。
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取