这篇文章主要教大家怎么计算大模型部署时需要的资源,像要多少显存,以及生成内容的速度怎么算,还推荐了一些实用工具。具体内容如下:
在大模型部署时,优化显存可从技术、策略、工具三方面入手:
- 量化压缩技术:运用量化技术降低模型存储与计算所需的显存。像QLoRA技术,能实现4bit量化训练,在维持一定模型性能的同时,大幅减少显存占用,使模型能在显存有限的环境中运行。
- 梯度检查点策略:采用梯度检查点技术,以时间换空间。训练过程中,它选择性地丢弃中间激活值,需要时重新计算,从而节省约30%的显存,平衡计算资源与时间成本。
- 模型并行方法:通过Tensor Parallelism和Pipeline Parallelism两种模型并行技术,将模型不同部分分割到多个GPU上。前者按张量维度拆分计算,后者按网络层划分计算,提升计算效率,降低单GPU显存压力。
- 借助估算工具:使用LLM Memory Calculator这类显存估算工具,提前精准估算模型在不同配置下的显存需求,帮助选择合适的硬件与优化策略,避免因显存不足导致部署失败。
大模型 “饭量” 计算(显存需求)
- 推理阶段:由模型本体、KV 缓存机制、激活内存这 3 个部分 “吃” 显存。模型本体占用是模型参数数量乘以精度字节数,比如用 FP16 精度部署 320 亿参数的模型,就要 64GB 显存。KV缓存机制的显存需求跟批次大小、序列长度等有关,长文本场景下占用会比较大。激活内存可以通过 Flash Attention 技术优化,能降低40% 的占用。
- 训练阶段:显存需求大概是推理阶段的 4 - 6 倍,主要由模型参数、优化器状态、梯度、激活值这几个部分占用。用 Adam优化器和混合精度训练时,有个估算公式:训练显存≈推理显存 ×5 + 数据集缓存。
- 显存优化:可以用 QLoRA 技术进行 4bit量化训练,还能用梯度检查点(用时间换空间,能省 30% 显存)和模型并行(Tensor Parallelism/PipelineParallelism)的方法。另外,文章推荐了 LLM Memory Calculator 这个工具来估算显存。
生成速度计算
- 性能指标:TTFT(首个 token 生成时间)理想值要小于 1 秒;TPOT(每个输出 token 生成时间)要小于 50 毫秒 /token;TPS(每秒生成 token 数)要大于 20 tokens/s 。
- 计算公式:理论生成速度 = (GPU 计算能力 × 利用率)/(2× 参数量 × 输入 token 数) 。比如用 8 块 A100(312 TFLOPS)运行 320 亿参数模型,输入 1000 个 tokens,利用率 50%,算出来大概是 0.05 秒 /token 。
- 加速方案:介绍了 KV Cache、8bit 量化、动态批处理、FlashAttention 这几种加速方法的加速效果和副作用。像 KV Cache 能加速 3 - 5 倍,但会增加显存占用;8bit 量化能加速 2 倍,不过有小于 1% 的精度损失。
硬件选型
- 显卡对比:列出了 H100、A100、RTX4090、T4 这些主流显卡的 FP16 算力、显存、带宽、能耗和性价比等信息
- 选型建议:中小模型(小于 130 亿参数)选 A10/T4 性价比高;大模型(130 亿 - 700 亿参数)用 A100/H100 组成的集群比较好;超大规模模型(大于 700 亿参数)适合用 H100 搭配 NVLink 组网。
实战工具推荐
- 显存计算器(LLM Memory Calculator)
- 推理加速框架(vLLM)
- 量化工具包(AutoGPTQ + GPTQ - for - LLaMA)
- 监控工具(NVIDIA DCGM + Prometheus)
- 大模型中转API推荐
- 中转使用教程