《用于精神疾病医疗保健的数字化分诊辅助的定制大语言模型》一文研究了大语言模型(LLM)在优化精神疾病医疗分诊过程中的应用。这项研究特别侧重于解决英国NHS面临的挑战,在英国,精神健康服务的漫长等待是一个严重而重要的问题。作者建议使用大语言模型来处理来自电子病历的非结构化临床数据,以帮助临床医生为患者选择最合适的精神疾病的医疗保健团队。
这项研究是在英国NHS的背景下进行的,患者通常由全科医生转诊到二级精神健康服务机构。转诊过程包括全科医生对患者的困境、症状和风险进行描述,然后由精神健康服务机构用于分诊。作者强调,这一过程耗时且主观,往往会导致患者诊治的延误和患者的懊恼与失望。
为了应对这些挑战,研究人员探索了利用大语言模型获取可变字长的临床电子病历数据并协助分诊过程的三种不同方法。这些模型旨在根据临床记录推荐最相关的精神疾病医疗保健团队,目的是减少等待时间,改善分诊决策的循证性。
本文讨论了将大语言模型用于此目的的几个关键性挑战,包括:
●表征学习:从电子病历中的叙述性临床记录中提取相关信息,而这些信息可能很杂乱和特殊怪异。
●管理可变的Token序列长度:要解决电子病历中不同文书长度的问题,从简短的管理记录到冗长的临床评估。
●独特的临床语言:临床环境中使用的独特语言和术语,与开源数据集里所使用的语言有很大不同。
●临床文本中的冗余:处理大量的临床文本,其中通常包含不少冗余或无关的信息。
●大语言模型的效率:在临床环境中资源有限的情况下,要确保大语言模型管道在计算上高效。
作者使用牛津健康NHS基金信托(英国NHS服务体系中的一种医疗机构,由慈善基金会或信托基金会管理,旨在提供更好的医疗保健服务)的数据集评估了他们的方法,其中包括大约20万名患者的电子病历数据。他们开发了一个启发式规则,根据转诊日期后14天窗口内是否有记录来确定是否接受转诊。该数据集用于训练和评估用于分诊任务的大语言模型。
该研究提出了处理可变字长序列的三种主要方法:
●文书级方法,其中每个医疗文书都单独处理。
●实例级方法,将患者的所有文书连接起来,并作为单个序列进行处理。
●实例级的分段-批处理方法,将连接后的文书分成段并进行批处理。
结果表明,分段和批量方法结合低秩自适应(LoRA)的训练效率,在准确度、精确度和召回率方面都为分诊任务提供了最佳性能。
最后,本文讨论了所提出的基于大语言模型的分诊辅助系统在提高精神疾病治疗分诊过程的效率和有效性方面的潜力。它还强调了需要做进一步的工作,与临床医生一起测试该系统的可接受性和实用性,并探索使用专门从事分诊过程不同方面的分诊“智能体”。
总之,该文强调了大语言模型通过有效处理电子病历中的非结构化临床数据来协助精神疾病医疗保健分诊的前景,从而支持临床医生做出更明智和更及时的分诊决策。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。