大模型Agents开发框架如今已经百花齐放,层出不穷。本文将盘点8种主流LLM Agents开发框架,并介绍如何在每种框架中集成当下备受关注的MCP Server,让Agents系统更方便的接入外部工具。包括:
-
OpenAI Agents SDK
-
LangGraph
-
LlamaIndex
-
AutoGen 0.4+
-
Pydantic AI
-
SmolAgents
-
Camel
-
CrewAI
*01*
Open AI Agents SDK
【框架简介】
OpenAI Agents SDK是OpenAI官方推出的轻量级Agent开发框架,旨在方便开发者构建多Agent协作的智能体系统。该SDK源于OpenAI内部实验项目Swarm,并在近期正式推出生产版本。OpenAI Agents SDK的特点是:简单易用、轻量级、专注在最小集功能,并支持转交(Handoffs)、护栏(Guardrails)等很有特点的功能。
【集成MCP】
以下代码演示了如何将OpenAI Agent实例连接到一个搜索的MCP Server,并将其中的工具集成Agent中:
import asyncio, os
from agents import Agent, Runner, AsyncOpenAI, OpenAIChatCompletionsModel, RunConfig
from agents.mcp import MCPServerStdio
asyncdefmain():
# 1. 创建MCP Server实例
search_server = MCPServerStdio(
params={
"command": "npx",
"args": ["-y", "@mcptools/mcp-tavily"],
"env": {**os.environ}
}
)
await search_server.connect()
# 2. 创建Agent并集成MCP Server
agent = Agent(
name="助手Agent",
instructions="你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。",
mcp_servers=[search_server], # 将MCP Server列表传入Agent
)
# 3. 运行Agent,让其自动决定何时调用搜索工具
result = await Runner.run(agent, "Llama4.0发布了吗?",run_config=RunConfig(tracing_disabled=True))
print(result.final_output)
await search_server.cleanup()
if __name__ == "__main__":
asyncio.run(main())
有趣的是,在使用远程MCP Server时,Agents SDK提供了自动缓存工具列表的选项(通过设置cache_tools_list=True
)。如果需要手动使缓存失效,可以调用MCP Server实例上的invalidate_tools_cache()
方法 。
*02*
LangGraph
【框架简介】
LangGraph来自著名的LangChain,是一个用于构建Agentic Workflow的强大框架,它将任务过程建模为有状态的Graph结构,从而可以实现更复杂和结构化的交互。在该框架内集成MCP Server可以在工作流程的各个阶段更精确地控制何时以及如何调用外部工具,从而实现复杂的Agentic系统。
LangGraph的特点是功能强大,你可以使用Prebuilt的接口快速创建Agent,也可以使用Graph定义复杂的Agentic工作流与多Agent系统;缺点是略显复杂。
【集成MCP】
将前面的示例修改为LangGraph+MCP Server的代码实现:
import asyncio, os
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
from langgraph.prebuilt import create_react_agent
# 加载环境变量
load_dotenv()
# 定义大语言模型
model = ChatOpenAI(model="gpt-4o-mini")
# 定义并运行agent
asyncdefrun_agent():
# 定义MCP服务器,用于访问Tavily搜索工具
asyncwith MultiServerMCPClient(
{
"tavily": {
"command": "npx",
"args": ["-y", "@mcptools/mcp-tavily"],
"env": {**os.environ} # 传递环境变量给MCP工具
}
}
) as client:
# 创建ReAct风格的agent
agent = create_react_agent(model, client.get_tools())
# 定义系统消息,指导如何使用工具
system_message = SystemMessage(content=(
"你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。"
))
# 处理查询
agent_response = await agent.ainvoke({"messages": [system_message, HumanMessage(content="Llama4.0发布了吗?")]})
# 返回agent的回答
return agent_response["messages"][-1].content
# 运行agent
if __name__ == "__main__":
response = asyncio.run(run_agent())
print("\n最终回答:", response)
注意这里使用MultiServerMCPClient可以灵活的支持多个MCP Server的同时连接,对于单个Server场景,你也可以借助load_mcp_tools方法直接从MCP SDK的session中导入Tools(无需MultiServerMCPClient)。
*03*
LlamaIndex
【框架简介】
LlamaIndex最初是一个专注于构建基于外部数据的LLM应用程序的框架,其独特之处在于构建以数据为中心的LLM应用的能力,特别是复杂的企业级RAG应用。但随着LlamaIndex Workflows与AgentWorkflow功能的推出,LlamaIndex也发展为一个更全能的专注于企业级RAG+Agent系统的开发框架。特点是功能强大、预置大量RAG应用优化模块;事件驱动的Workflows在Agent开发上比LangGraph更简单。
【集成MCP】
LlamaIndex目前也支持与MCP Server集成,快速导入Tools使用:
from llama_index.tools.mcp import McpToolSpec,BasicMCPClient
import asyncio
from llama_index.llms.openai import OpenAI
from llama_index.core.agent import ReActAgent
import os
llm = OpenAI(model="gpt-4o-mini")
asyncdefmain():
mcp_client = BasicMCPClient("npx", ["-y", "@mcptools/mcp-tavily"], env={**os.environ})
mcp_tool = McpToolSpec(client=mcp_client)
tools = await mcp_tool.to_tool_list_async()
agent = ReActAgent.from_tools(
tools,
llm=llm,
verbose=True,
system_prompt="你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。"
)
response = await agent.aquery("Llama4.0发布了吗?")
print(response)
if __name__ == "__main__":
asyncio.run(main())
如果你的MCP Server是远程SSE模式运行,只需要更换BasicMCPClient初始化时的参数,将命令及参数(如npx)更换为url即可。
*04*
AutoGen 0.4+
【框架简介】
AutoGen是微软开发的一个框架,用于构建具有多Agent对话的下一代企业级AI应用。其独特之处在于专注于通过多个Agent之间的协调交互来实现协作和解决复杂任务,在最新的AutoGen0.4中,微软进行了颠覆性的架构修改,特别是开放了AutoGen-Core这一更底层的API层,可用于构建更底层与细粒度控制的分布式多Agent系统。其特点是功能强大,支持分布式多Agent,可根据需要选择不同层次的API使用;缺点是较复杂。
【集成MCP】
在Autogen 0.4的扩展中提供了MCP集成的组件,演示如下(代码有省略):
from autogen_ext.tools.mcp import StdioServerParams, mcp_server_tools
...
async def get_mcp_tools():
server_params = StdioServerParams(
command="npx",
args = [
"-y",
"@mcptools/mcp-tavily",
],env={**os.environ}
)
tools = await mcp_server_tools(server_params)
return tools
...
classToolUseAgent(RoutedAgent):
...
async defmain():
"""主函数,设置并运行agent系统"""
# 创建单线程agent运行时
runtime = SingleThreadedAgentRuntime()
mcp_tools = await get_mcp_tools()
tools = [*mcp_tools]
# 注册agent类型
await ToolUseAgent.register(runtime, "my_agent", lambda: ToolUseAgent(tools))
...
message = Message('Llama4.0发布了吗?)
response = await runtime.send_message(message, AgentId("my_agent", "default"))
如果需连接远程MCP Server,请使用SseServerParams组件,并使用url参数初始化。
*05*
Pydantic AI
【框架简介】
Pydantic AI来自于著名的Pydantic库开发者,是一个将Pydantic与LLM集成的Agents开发框架。其独特之处在于专注于在AI应用中利用Pydantic的类型验证、序列化与结构化输出等功能。Pydantic AI的特点是天然的结构化输出与强类型验证,且简洁易用,与其他框架也有良好的集成,可以结合使用。
【集成MCP】
使用Pydantic AI集成MCP Server中的工具非常简单(与OpenAI Agents SDK非常类似),只需要简单的提供Server配置即可:
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStdio
import os
server = MCPServerStdio(
'npx',
["-y", "@mcptools/mcp-tavily"],
env={**os.environ}
)
agent = Agent(
name="助手Agent",
system_prompt="你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。",
model='openai:gpt-4o-mini',
mcp_servers=[server])
async def main():
asyncwith agent.run_mcp_servers():
result = await agent.run('"Llama4.0发布了吗?')
print(result.data)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
如果需要使用SSE远程MCP,将Server组件更改为MCPServerHTTP即可。
*06*
SmolAgents
【框架简介】
Smloagents是大名鼎鼎的Hugging Face开发的一个轻量级Agent开发框架。其特点在于简洁易用、基于生成代码的工具调用(核心抽象叫CodeAgent)以及与Hugging Face生态系统的集成。Smloagents与MCP的集成提供了一种直接的方式,可以为Agent添加复杂的功能,而无需为每个工具进行自定义编码。
【MCP集成】
以下代码演示了如何初始化一个Smloagent并将其连接到MCP Server:
from smolagents import ToolCollection, CodeAgent
from smolagents.agents import ToolCallingAgent
from smolagents import tool, LiteLLMModel
from mcp import StdioServerParameters
import os
model = LiteLLMModel(model_id="gpt-4o-mini")
server_parameters = StdioServerParameters(
command="npx",
args=["-y", "@mcptools/mcp-tavily"],
env={**os.environ},
)
with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
agent = ToolCallingAgent(tools=[*tool_collection.tools], model=model)
response = agent.run("llama4.0发布了吗?")
print(response)
如果你需要使用SSE模式的MCP Server,只需要替换服务器配置参数为url即可。
*07*
Camel
【框架简介】
Camel是一个专注于创建能够进行复杂对话以解决任务的强大的多智能体构建框架 。其独特之处在于使用AI Agent之间的角色扮演和交互协作来完成任务,并内置了多种角色的Agent抽象及大量组件,Camel也可以用来开发RAG应用。现在这些Agent也可以通过MCP Server得到增强。
Camel还提供了一个将Camel中创建的工具集发布成MCP Server的功能。
【MCP集成】
你可以参考如下方式将基于Camel的Agent与MCP Server做集成:
import asyncio
from mcp.types import CallToolResult
from camel.toolkits.mcp_toolkit import MCPToolkit, MCPClient
import os
from camel.agents import ChatAgent
async def run_example():
mcp_client = MCPClient(
command_or_url="npx",
args=["-y", "@mcptools/mcp-tavily"],
env={**os.environ}
)
await mcp_client.connect()
mcp_toolkit = MCPToolkit(servers=[mcp_client])
tools = mcp_toolkit.get_tools()
try:
agent = ChatAgent(system_message='根据任务描述,使用网页搜索工具获取信息。',
tools=tools)
response = await agent.astep("llama4.0发布了吗?")
print("Response:", response.msgs[0].content)
except Exception as e:
print(f"Error during agent execution: {e}")
finally:
# 确保在任何情况下都会断开连接
await mcp_client.disconnect()
if __name__ == "__main__":
asyncio.run(run_example())
如果需要连接SSE的远程Server,替换这里的MCPClient中的输入参数为url即可。
*08*
CrewAI
【框架简介】
CrewAI是一个用于编排自主AI智能体像团队一样协作完成复杂任务的多智能系统开发框架。其独特之处在于其“角色扮演”的设计,专注于创建具有特定角色和职责的结构化Agent团队(称为Crew);最新的Flow功能可用于创建更可靠的Agentic Workflow。
【MCP集成】
目前官方的MCP集成正在紧锣密鼓的完善,还没有正式发布,暂时你可以借助一个第三方适配器进行:
import os
from crewai import Agent, Crew, Task # type: ignore
from mcp import StdioServerParameters
from mcpadapt.core import MCPAdapt
from mcpadapt.crewai_adapter import CrewAIAdapter
with MCPAdapt(
StdioServerParameters(
command="npx",
args=["-y", "@mcptools/mcp-tavily"],
env={**os.environ}
),
CrewAIAdapter(),
) as tools:
print(f"Tools: {tools}")
agent = Agent(
role="MyAgent",goal="根据任务描述,使用网页搜索工具获取信息。",backstory="你是一个中文搜索助手",
tools=tools,llm='gpt-4o-mini',
)
# Create a task
task = Task(
description="llama4.0的最新消息",agent=agent,expected_output="消息列表")
task.execute_sync()
官方的MCP适配器的进展可以参考其Github开源项目的PR #2496(MCP servers tool support in CrewAI #2496)。
以上为大家盘点了8个常见的AI Agent开发框架及其对MCP的支持。由于MCP诞生不久且处于不断完善中,这些框架对MCP的适配也在不断迭代,请及时参考你所使用的开发框架的最新参考文档,了解最新变化。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。