TLDR
-
AI模型选择需要在质量、速度和价格之间进行权衡。
-
小型新兴API提供商在输出速度和价格方面表现出色,为用户提供了更具竞争力的选择。
-
API提供商通常对输入和输出token收取不同的价格,这可能会显著影响最终的成本。
一、AI 现状概述
人工智能正在以前所未有的速度改变着我们的世界,语言模型作为AI的核心技术之一,也正在经历着日新月异的发展。为了让开发者和企业更好地利用语言模型,众多科技巨头和初创公司纷纷推出了自己的语言模型和API服务。但面对眼花缭乱的选择,如何做出明智的决策成为了摆在开发者和企业面前的难题。
二、模型选择指南
Artificial Analysis平台对市面上主流的AI模型进行了深度分析,并根据模型质量、速度、价格等因素为开发者和企业提供选择建议。
2.1 根据能力比较质量
Artificial Analysis平台根据模型的能力类别对模型质量进行了分类评估,例如根据聊天机器人竞技场、推理和知识、编码能力进行分类。
-
不同的应用场景需要考虑不同的评估测试。
-
聊天机器人竞技场是评估沟通能力的良好测试,而MMLU则更全面地测试推理和知识。
(图1:不同模型质量对比图)
2.2 质量 vs. 输出速度
Artificial Analysis平台将模型质量与输出速度进行了对比分析,并根据价格将不同模型划分到不同的象限,方便用户根据自身需求快速定位。
-
模型质量和输出速度之间需要权衡,质量更高的模型通常输出速度较慢。
-
部分模型在保证高质量的同时,也能提供较快的输出速度和有竞争力的价格。
(图2:不同模型质量 vs. 输出速度对比图)
2.3 质量 vs. 价格
Artificial Analysis平台将模型质量与价格进行了对比分析,并根据价格将不同模型划分到不同的象限,方便用户根据自身需求快速定位。
-
虽然质量更高的模型通常价格更高,但并非所有模型都遵循相同的价格-质量曲线。
-
部分模型在保证高质量的同时,也能提供更具竞争力的价格。
(图3:不同模型质量 vs. 价格对比图)
2.4 输出速度
(图4:不同模型输出速度对比图)
2.5 输入和输出token价格
- 价格差异巨大,输入和输出token价格之间,以及最昂贵和最便宜的模型之间,价格可能相差几个数量级(>10倍)。
(图5:不同模型输入和输出价格对比图)
三、API 提供商选择指南
在选择API提供商时,需要考虑以下因素:
-
价格和技术性能指标: 比较不同提供商的价格、吞吐量和延迟等指标,选择最符合预算和性能需求的方案。
-
模型可用性: 不同的API提供商支持的模型不同,需要选择提供所需模型的提供商。
-
其他因素: 还需要考虑OpenAI兼容性、速率限制、上下文窗口大小等细节因素。
3.1 Llama 3 Instruct (70B) 模型案例分析
3.1.1 输出速度 vs. 价格
- 小型新兴提供商正在以具有竞争力的价格提供高输出速度。
(图6:Llama 3 Instruct (70B) 模型不同API提供商速度价格对比图)
3.1.2 输入和输出token价格
-
提供商通常对输入和输出token收取不同的价格。
-
某些用例的输入/输出token价格比率可能会严重影响总成本。
(图7:Llama 3 Instruct (70B) 模型不同API提供商输入输出token价格对比图)
3.1.3 输出速度随时间变化
- 小型新兴提供商提供高输出速度,但提供的精确速度每天都在变化。
(图8:Llama 3 Instruct (70B) 模型不同API提供商输出速度随时间变化图)
四、 AI模型与API提供商的选择流程
为了做出最佳选择,建议遵循以下流程:
-
明确用例需求: 首先明确你的应用场景和需求,例如是需要用于聊天机器人、文本生成、代码生成还是其他任务,以及对模型的质量、速度、价格等方面有什么具体的要求。
-
选择合适的模型: 根据你的用例需求,初步筛选出符合条件的模型,并进行定制化测试,以便更准确地评估模型的性能表现。Artificial Analysis平台提供了丰富的模型信息和测试工具,可以帮助你快速找到合适的模型。
-
选择合适的API提供商: 在确定了合适的模型之后,你需要选择一家提供该模型的API提供商。不同的API提供商在价格、性能、功能等方面都存在差异,你需要根据自身的需求进行权衡选择。
五、主流模型一览
(表1:主流模型信息汇总表)
模型名称 | 创建者 | License | 上下文窗口 |
---|---|---|---|
GPT-4o | OpenAI | Proprietary | 128k |
GPT-4 Turbo | OpenAI | Proprietary | 128k |
GPT-4 | OpenAI | Proprietary | 8k |
GPT-3.5 Turbo Instruct | OpenAI | Proprietary | 4k |
GPT-3.5 Turbo | OpenAI | Proprietary | 16k |
Gemini 1.5 Pro | Proprietary | 1m | |
Gemini 1.5 Flash | Proprietary | 1m | |
Gemma 2 (9B) | Open | 8k | |
Gemini 1.0 Pro | Proprietary | 33k | |
Gemma 7B Instruct | Open | 8k | |
Llama 3 Instruct (70B) | Meta | Open | 8k |
Llama 3 Instruct (8B) | Meta | Open | 8k |
Llama 2 Chat (70B) | Meta | Open | 4k |
Llama 2 Chat (13B) | Meta | Open | 4k |
Code Llama Instruct (70B) | Meta | Open | 16k |
Llama 2 Chat (7B) | Meta | Open | 4k |
Mistral Large | Mistral | Proprietary | 33k |
Mixtral 8x22B Instruct | Mistral | Open | 65k |
Mistral Small | Mistral | Proprietary | 33k |
Mistral Medium | Mistral | Proprietary | 33k |
Mixtral 8x7B Instruct | Mistral | Open | 33k |
Mistral 7B Instruct | Mistral | Open | 33k |
Claude 3.5 Sonnet | Anthropic | Proprietary | 200k |
Claude 3 Opus | Anthropic | Proprietary | 200k |
Claude 3 Sonnet | Anthropic | Proprietary | 200k |
Claude 3 Haiku | Anthropic | Proprietary | 200k |
Claude 2.0 | Anthropic | Proprietary | 100k |
Claude Instant | Anthropic | Proprietary | 100k |
Claude 2.1 | Anthropic | Proprietary | 200k |
Command Light | Cohere | Proprietary | 4k |
Command | Cohere | Proprietary | 4k |
Command-R+ | Cohere | Open | 128k |
Command-R | Cohere | Open | 128k |
OpenChat 3.5 (1210) | OpenChat | Open | 8k |
DBRX Instruct | Databricks | Open | 33k |
Reka Core | Reka AI | Proprietary | 128k |
Reka Flash | Reka AI | Proprietary | 128k |
Reka Edge | Reka AI | Proprietary | 64k |
Jamba Instruct | AI21 Labs | Open | 256k |
DeepSeek-V2-Chat | DeepSeek | Open | 128k |
Arctic Instruct | Snowflake | Open | 4k |
Qwen2 Instruct (72B) | Alibaba | Open | 128k |
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。