1. 动机
知识图谱中的实体既可以是现实世界中对象,也可以是抽象的概念,实体间的关系也提供了大量的知识。然而现实世界的知识图谱存在不完备性,意味着知识图谱中存在着未涵盖或未完整表示现实世界知识的情况,即使已经包含了大量的信息和关系,仍然存在一些未被收录或未被充分描述的实体、关系或属性。近来,学者们开始将语言模型(LMs)应用于知识图谱补全(KGC)任务。目前基于LMs的方法仅依赖于从LMs参数中提取的信息,忽略了知识图谱本身拥有的领域实体的一些信息,而知识图谱中的结构和语义信息对于预测缺失的节点是有帮助的。且通常需要对所有可能的候选节点排序,是计算开销大的过程。
为此本文提出了一种生成式图补全方法,该方法结合了语言模型和图邻域信息,以提高知识图谱中缺失链接的预测能力。与传统的知识图谱补全方法不同,不需要计算密集的知识图谱嵌入,而是直接利用语言模型参数和图邻域信息。这种方法不仅避免了对所有可能的候选节点进行排序的计算开销,而且能够更好地捕捉知识图谱中的结构和语义信息。还提出了一种新的邻域选择策略,可以根据节点的重要性和相关性动态地选择邻域,更好地表示图节点。
2. 贡献
(1)提出了一种有效集成语言模型与图邻域信息的生成式图补全方法
(2)证明了将图信息纳入多个生成性语言模型可显著提高链接预测的性能
(3)分析和评估了添加邻域信息对模型性能的影响
3. 方法
3.1 三元组转化为文本序列
对于给定的知识图谱G,通过一个简单的模板转换将其三元组(头实体,关系,尾实体)转化为文本序列,目的是将结构化的知识图谱数据转化为自然语言文本,以便于后续的语言模型处理。例如将三元组(Steve Jobs,place of birth,?)转化为“predict Steve Jobs place of birth”。
3.2 提取邻域集合
其次对每个三元组通过遍历知识图谱中与头实体直接相连的边,从G中提取与头实体相邻的一跳邻居,形成一个邻域集合,获取头实体的上下文信息,以便于后续的预测。
3.3 排序邻域集合
根据邻居三元组中的关系与查询三元组中的关系的语义相似度,通过计算关系向量之间的余弦相似度,对邻域集合进行排序,选择最相关的邻居作为输入的上下文信息。目的是选择与查询最相关的上下文信息,以提高预测的准确性。
3.4 生成尾实体的文本序列
使用基于T5的Transformer模型,将查询三元组和邻域集合作为输入,直接生成尾实体的文本序列作为输出。目的是生成尾实体的文本序列,以便于后续的实体链接。
3.5 寻找对应的实体
通过一个实体链接模块,根据输出序列在知识图谱中寻找对应的实体,作为补全的结果。如果是归纳性的知识图谱,可能需要生成之前未见过的实体。这一步是来完成的,目的是将生成的文本序列链接到知识图谱中的实体。
4. 实验
作者方法背后的假设是,在提供给语言模型的上下文中包含的邻域信息应该增强生成LM的链接预测。因此作者使用了两种类型的KG数据集进行了实验,一种是Wikidata5M,另一种是ILPC。作者使用了T5-small模型作为基础模型,并对其进行了不同的配置,包括是否使用预训练的权重,是否加入邻居信息,以及使用不同的推理策略。作者还使用了OpenAI的gpt-3.5-turbo模型进行了零样本的链接预测,并评估了邻居信息的影响。在性能评价方面,则使用Hits@k指标来衡量模型的性能,即预测的候选实体中有多少比例是正确的。下图为实验结果:
同时使用gpt-3.5-turbo-0613改进邻居信息的零击链接预测,测试集为从ILPC中随机抽取5000的样本,结果如下图,获得了较大的结果。
5. 总结
实验结果表明,加入邻居信息可以显著提升链接预测的质量。方法在ILPC数据集上达到了最优的性能,而在Wikidata5M上也与其他基于图或语言模型的方法有可比的性能,但参数数量更少。作者还发现预训练的语言模型可以加速收敛,但会降低模型的质量。此外作者还证明了邻居信息对于不同的生成模型都有益处,包括开源的T5和专有的GPT。作者还分析了邻居信息的影响,发现模型可以利用邻居中的线索来做出更好的预测,而且邻居的重要性和排序也会影响模型的性能。
这里对论文只进行了核心思想的概要介绍,对本文有兴趣的读者欢迎阅读原文了解更多细节。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。