OpenAI 发布了最新的o1 模型提示词建议。
OpenAI 刚刚发布了 o1 模型的新提示指南!
o1 模型:更聪明的 AI"大脑"
OpenAI 称 o1 模型家族比之前的模型更强大、推理能力更好。
简单来说就是:o1 更聪明了,不需要你手把手教它了。
之前的模型需要我们给出详细指令,甚至利用更长的上下文窗口来提供更多信息。但 o1 不一样,它可以自己思考如何解决问题。
新的提示词策略:简单才是王道
那么,如何才能驾驭这个"高智商"模型呢?OpenAI 给出了四点建议:
-
保持提示简单直接:不要过多引导模型,因为它已经能很好地理解指令了。
-
避免使用思维链提示:因为 o1 模型已经在内部进行推理了。
-
使用分隔符:如三重引号、XML 标签和章节标题,让模型更清楚地理解各个部分。
-
限制额外上下文:特别是在检索增强生成(RAG)任务中,因为添加更多上下文或文档可能会使响应变得过于复杂。
这完全颠覆了之前的建议啊!以前 OpenAI 还让我们要超级具体,给出细节和一步步的指令。现在倒好,o1 要自己"思考"了。
提示词工程的未来:即将成为"遗物"?
面对这种变化,有人开始担心提示词工程的未来。
有人大胆预测:随着时间的推移,随着智能的提高,LLM 将不再需要复杂的提示词。
虽然这个预测有点极端,但确实值得我们思考:随着 AI 模型越来越智能,我们是否还需要那么多"技巧"来与之沟通?
优化后的提示模板:让 AI 写出你的风格
尽管如此,OpenAI 还是给出了一个优化后的提示模板,可以让 o1 模型模仿特定的写作风格:
‹context>``Please analyze the writing style, tone, and structure in the following examples. Focus on elements like vocabulary choice, sentence complexity, pacing, and overall voice.``</context>``‹examples>``[Insert your writing samples here, add delimiters between them as well]``</examples>``<instruction>``Generate a [type of content, e.g., "informative article" or "blog post"] about [specific topic]. The content should match the style, tone, and structure of the provided examples. Make sure it is original, engaging, and suitable for [mention the target audience or purpose].``</instruction>
这个模板包括三个主要部分:
-
context:要求模型分析写作风格、语气和结构。
-
examples:插入你的写作样本。
-
instruction:指定内容类型、主题和目标受众。
使用这个模板,你就可以让 o1 模型生成符合你特定风格的内容了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。