最近,Qwen 2.5已经发布了,我已经写了一篇关于他的文章,但我们还没有在真正的编程环境中测试它。所以今天,我将向你展示如何将Qwen 2.5与Aider、Claude Dev、Continue 一起使用,并且我们将进行一些编程测试,看看它的表现如何。
在我们开始之前,我们需要决定使用什么模型,因为有很多可用的模型。
最好的选择是Qwen 2.5的72B模型,因为这是可用的最大模型,击败了llama3.1 405B,所以我们可以把这个模型作为主要的模型,与Claude Dev、Continue 和Aider一起使用。
除此之外,对于简单的聊天和代码交互,我们可以本地使用7B编码器模型,而对于自动补全功能,我们也可以使用新的1.5B编码器模型。
不过,我并不推荐这样做,因为SuperMaven可以免费提供自动补全服务,而且速度也非常快,通常效果更好。
不过,如果你想试试,我会向你展示如何配置,并且我们也会看看Qwen 2.5的自动补全能力。
我们可以轻松地在本地托管7B和1.5B模型,但我们无法在本地托管72B模型,因此我们需要选择一个提供商。有多个提供商提供免费积分和使用权限,例如Together AI,但他们还没有添加新的Qwen模型。
因此,我将使用Hyperbolic,它已经提供了新的72B模型,并且提供了10美元的免费积分。
▲ https://app.hyperbolic.xyz/models
尽管推理速度较慢,因为它使用的是BF16变体(即未量化的模型),这通常能提供更好的结果。无论如何,我们将使用它,并且你也可以免费跟随进行操作。
让我们开始吧!首先,从Continue开始。前往VS Code,在扩展中搜索Continue,找到后安装它。安装完成后,我们需要进行设置。
在此之前,先前往Hyperbolic创建一个API密钥。复制并妥善保存,因为稍后我们会用到它。
完成后,回到Continue Dev,点击“添加”按钮,然后选择OpenAI兼容选项。
输入Hyperbolic的基本URL,
随便选择一个模型添加,
但我们需要Qwen模型,还需要输入API密钥。
为此,点击“设置”选项,打开此文件,在这里输入API密钥,并将模型名称更改为Qwen 2.5。
完成后,保存设置,现在我们相当于在Continue中添加了一个
Qwen 2.5 72B的基础模型可用于和Continue进行聊天、生成代码、应用更改和重构代码等待操作。当然Continue的代码补全可以设立单独的模型,我推荐使用SuperMaven,
因为它免费且快速,但如果你想让补全功能在本地运行,我们可以使用新的Qwen 2.5 coder:1.5B模型来配置,教你如下操作:
Ollama拉取qwen 2.5:1.5B
你可以看到它运行得非常好,效果也不错。这是一个基本的Copilot设置。你可以使用更大的72B模型或7B编码器模型进行聊天,并使用1.5B模型进行自动补全。
上面是Continue中的配置,现在介绍Claude Dev中如何运行qwen 2.5:72B(这两个插件常常协作使用)
现在,我将使用Hyperbolic端点,所以选择OpenAI兼容选项,但你也可以选择ollama本地选项。
选择API端点、API密钥和模型名称。完成后,点击“完成”按钮并保存。现在我们可以开始使用它了。
让我通过创建一个简单的Todo应用来展示。我们让它生成一个简单的HTML、CSS和JS的Todo应用程序。你可以看到它正在生成代码,现在我们等待一下。
生成的页面运行得很好。这很棒,虽然不如Claude,但可用,而且Hyperbolic有免费的积分,所以你可以免费发送大量请求。
现在我们介绍第三个工具:Aider(Aider+Claude Dev+Continue这三个常常协作使用)。首先运行命令`pip install aider-chat`进行安装。
完成后,我们可以使用它了,不过还需要配置Hyperbolic。通过添加环境变量来更改OpenAI的基本URL,并添加API密钥作为另一个环境变量。一切设置好后,
使用这些参数启动Aider,它将与Hyperbolic一起运行。如果你想使用本地模型,启动时指定模型名称即可。
现在让我们要求它制作一个简单的扫雷游戏,使用HTML、CSS和JS。发送请求后,它开始工作了。稍等一下。
让我们运行一下。好,游戏运行正常,效果很好。
所有的工具在Qwen上都运行得不错,基本没有问题。虽然不如Claude那样功能全面,但这已经很好了。你可以使用它与Aider和Claude Dev生成一些非常不错的东西。而且,通过Hyperbolic访问是免费的。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。