IEEE TII | 论文速递!Meta-learning !Meta-GENE:基于元学习的领域泛化框架,用于智能故障诊断

本期荐读论文:

Meta-learning Based Domain Generalization Framework for Fault Diagnosis With Gradient Aligning and Semantic Matching

本期推文的内容概要

本期推文将介绍一种基于元学习的梯度对齐与语义匹配领域泛化框架(Meta-learning Based Domain Generalization Framework With Gradient Aligning and Semantic Matching,Meta-GENE)方法,用于智能故障诊断。这项研究发表于《IEEE Transactions on Industrial Informatics》期刊。

智能故障诊断模型在工业预测性健康管理(PHM)场景中表现出色。然而,当面对复杂的工业环境、新的工作条件以及低资源和异构数据时,这些模型可能难以实现良好的泛化能力。为了解决上述问题,荐读的论文专注于构建一个通用的训练框架,并通过领域泛化技术提升故障诊断模型在未知工作条件下的泛化能力。首先,提出了一种基于模型不可知元学习的训练框架——Meta-GENE,用于同质和异质领域的泛化。其次,在元学习框架中引入了梯度对齐算法,旨在学习一种领域不变的策略,以确保模型在未知工作条件下的稳健预测能力。第三,提出了一种语义匹配技术,以利用异构数据缓解低资源问题。该方法在PHM09故障诊断数据集上表现优异,并在不同工作条件下的一系列泛化任务中取得了出色的结果。

论文的创新点主要有以下几点:

1)设计了一个基于模型无关元学习的领域泛化(Domain generalization,DG)框架,称为Meta-GENE,通过在双层优化循环中集成领域匹配算法和语义匹配技术,实现同质和异质领域泛化。

2)在元学习框架中引入了一种简单而有效的梯度对齐算法,用于学习领域不变的预测策略,并减轻多源领域数据之间的领域偏移。在此过程中,挖掘领域不变信息,鼓励故障诊断模型在未知工作条件下具有良好的泛化能力。

3)提出了一种新颖的语义匹配技术,以应对数据资源不足的问题,并消除异质标签空间中的语义差异,使故障诊断模型能够充分利用异质来源领域的数据。

问题的背景

随着工业智能化的不断发展,智能故障诊断成为工业预测性维护(PHM)技术的重要组成部分。智能故障诊断旨在通过自动监测设备健康状态,为维护提供决策支持,保障工业设备的安全性、可用性和运行效率。近年来,人工智能技术的进步推动了这些新技术在工业故障诊断中的应用,涌现了诸多成功的应用实例,如支持向量机、深度信念网络、卷积神经网络等。

荐读论文解决的主要问题包括:

  • 面临的领域泛化与数据不足问题:尽管现有智能故障诊断方法在理想实验条件下表现优异,但在实际工业环境中,这些方法的性能常常受到限制。训练数据和测试数据分布的不一致,即领域偏移问题,使得模型在新工作条件下性能显著下降。在真实工业场景中,传感器数据可能因设备的自然退化或操作参数的调整而变化,导致训练数据和测试数据的分布发生偏移。此外,重新收集和标注新工作条件下的数据成本高昂甚至不可行。如何在无法获取目标领域数据的情况下,使模型在未知领域中具备良好的泛化能力,成为亟待解决的问题。

  • 资源匮乏与异构数据的挑战:在实际工业环境中,复杂的运行条件导致数据采集困难,尤其是故障数据难以获取。这种数据稀缺性问题限制了深度学习模型的训练和泛化能力。此外,不同工作条件下的数据集通常具有各自的标签标准,导致异构标签空间的存在,使得多源数据的联合训练更加复杂。

  • 持续学习与领域泛化的新思路:为解决领域偏移问题,领域适应(DA)技术被广泛研究,但其依赖于目标领域数据在训练过程中的可访问性。然而,在实际工业应用中,目标领域数据往往无法获取,这使得现有DA技术的适用性受到限制。为此,领域泛化(DG)技术被提出,旨在通过源领域数据的训练,使模型能够在未知的目标领域中保持良好的性能。

    荐读的论文采用元学习(Meta-learning)策略,通过多个相关任务的联合训练,捕捉领域不变知识,从而提升模型在未知领域中的泛化能力。与现有方法相比,本研究利用不同工作条件下的相关数据作为独立任务,通过元学习框架训练故障诊断模型,使其能够在缺乏目标领域数据的情况下依然具备优异的预测能力。

方法的概述

论文提出了一个基于元学习的DG框架,如图1所示。该框架包括双层元学习方式下的梯度对齐、语义匹配和不可见的DG。本文将在下文中详细讨论每个组件。

图1 基于元学习的DG框架

(一)梯度调整

为了缓解各相关数据域之间的领域偏移问题,该论文提出了一种通过梯度对齐规范故障诊断模型优化方向的新方法,在多数据域上以双层元学习方式进行训练。如前所述,旨在利用多个源域数据对模型进行训练,以减轻数据资源匮乏问题的影响。基于经验风险最小化(ERM)的优化范式倾向于学习特定领域的特征,以在源域上取得显著的性能。ERM通过简单地汇总所有源域数据并均等地最小化损失来优化模型参数,具体公式如下:

当基于ERM的模型遇到未见过的领域数据时,可能会因记住仅存在于特定领域的数据特征而容易失效。故障诊断模型应当学习领域不变的策略以实现稳健预测,这需要通过约束来防止模型陷入对特定领域特征的依赖。

(二)梯度近似

论文并未直接在模型训练中引入所提出的 LIDGM 损失,而是通过在双层元学习优化框架中估计 LGIP 损失的梯度来高效规避这一问题,如图 1 左侧所示。该双层元学习框架包含两个不同层级的更新循环:1)内层循环和 2)外层循环。

在元学习框架中连续使用各种源域数据进行训练时,模型会隐式地通过 LIGDM进行优化。接下来的分析将详细解释如何近似 LIGDM 的梯度。泰勒展开是一种强大的数学工具,用于通过不同阶数的多项式来近似函数。基于这一思路,荐读的论文在内层循环的某一步对梯度进行二阶泰勒展开,如公式下所示。

(三)语义匹配

为了利用异构域数据并实现跨域训练,从而解决低资源数据问题,提出了一种语义匹配技术,用于解决异构源域之间的语义差异。受未见标签泛化技术的启发,语义匹配技术旨在解耦标签的潜在属性,并通过对特征嵌入、语义空间中的标签嵌入进行对齐及重构标签表示,来统一异构标签空间。具体而言,首先将来自异构域的原始标签编码为one-hot 标签,然后输入到标签编码器中,将 one-hot 标签映射到语义空间中。接着,设计一个标签解码器,从语义空间中的标签嵌入重构原始标签,以避免在标签编码过程中丢失信息。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值