论文背景
本文由来自 Yale University 和 Duke University 的多位研究者合作研究,于2024年在Nature Biotechnology 期刊发表。文章链接附在本文文末。
用于推断单细胞基因轨迹的GeneTrajectory方法
论文创新点
GeneTrajectory 引入了基于最优传输的度量,计算基因在细胞图中的分布距离,从而在无需构建细胞伪时间的情况下推断基因轨迹。此方法能够识别和分离出细胞中多个独立进行的基因活动或信号通路,揭示基因动态,并更好地捕捉生物过程中的转录活动顺序。
详解
研究背景
传统的细胞轨迹推断方法无法有效处理同时进行的多种生物过程,因为这些方法依赖单一的伪时间来排列细胞。为了解决这一问题,GeneTrajectory 通过分析基因分布之间的距离,而非细胞的序列,来构建基因轨迹。
模型构建
该方法首先在所有细胞范围内构建一个细胞图并计算每对细胞间的图距离,然后计算基因之间的分布距离(也就是“Wasserstein 距离”)。基于这些基因间的距离,使用扩散映射的方法生成基因的低维表示并识别基因轨迹。
具体地,一共分为四个步骤:
1.构建细胞图并计算图中的距离。首先,在所有细胞之间建立一个图,把每个细胞和它周围的k个最近邻的细胞连接起来,这个称为细胞图。然后,计算每对细胞之间的最短路径长度,称为图距离。
2. 计算基因之间的分布距离。接着,在这个细胞图上计算基因之间的“分布距离”。具体来说,把每个基因在所有细胞中的表达情况看作一个分布,然后基于基因分布间的“Wasserstein距离”来衡量两个基因分布之间的差异。这种距离表示将一个基因的表达分布迁移到另一个基因分布所需的最小成本(可被理解为最优传输路径上的成本),从而量化了基因间的相似度。为了提高计算效率,对细胞图进行简化,比如将相邻的细胞聚合一下,只在需要时计算远距离基因之间的距离。
3. 识别基因轨迹。在得到基因之间的距离矩阵后,可以使用它来构建一个基因的相似性图。然后通过扩散映射把基因的相似性图转换成低维表示,这样可以更清晰地观察基因的相对位置。在这个低维空间中,可以识别出一系列基因轨迹。从一个起点基因开始,然后利用扩散算法找到其他与之相关的基因,形成一条基因轨迹,现在得到了这条轨迹包含的所有基因。
4. 沿每条轨迹对基因进行排序。在第三步确定了轨迹上的基因之后,对这些基因进行排序。会在这条轨迹的基因之间再次计算“Wasserstein距离”,并通过扩散映射找到一个新的低维表示。在这个表示中,通过排序特征(排序特征是指扩散映射生成的低维空间中的一个关键特征,通常是一个特征向量。)来为基因排序,从而获得基因顺序。
研究结果
GeneTrajectory 在模拟数据和真实数据中均展示了其有效性。例如,在模拟的细胞分化和细胞周期耦合场景中,该方法能够成功地识别并分离开不同的基因轨迹。在真实数据的应用中,GeneTrajectory 成功推断了人类髓系细胞分化过程中的基因动态,还成功推理了小鼠皮肤毛囊形成过程中的关键基因程序。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。