四种模式
📌 在AI发展进程中,Agent工作流程可能带来比基础模型更大的突破。通过系统性地运用四种设计模式,GPT-3.5的准确率实现了从48.1%到95.1%的显著提升。本文对吴恩达教授提出的AI Agent四种模式进行了解析。
一、Reflection(反思模式):让AI学会自我提升
🔍 工作原理
Reflection模式通过让AI对自己的输出进行反思和改进,实现质量提升。这类似于人类写作过程中的自我审查和修改。
📝 具体流程
- 生成初始输出
- AI首先针对任务生成第一版回答
- 自我评估
-
对输出内容进行审视
-
检查准确性、完整性和逻辑性
-
识别潜在问题和改进空间
- 优化迭代
-
基于发现的问题进行修改
-
可能进行多轮改进
-
直到达到质量要求
💡 实践价值
-
显著提升输出质量
-
减少错误和疏漏
-
增强答案的完整性
二、Tool Use(工具使用):扩展AI能力边界
🛠️ 核心功能
Tool Use模式让AI能够调用外部工具和API,极大扩展了其能力范围。
📋 主要工具类型
- 信息获取工具
-
网络搜索
-
Wikipedia查询
-
学术文献检索
- 代码相关工具
-
Python解释器
-
代码执行环境
-
单元测试工具
- 数据处理工具
-
数据分析函数
-
格式转换工具
-
数据验证服务
🎯 应用方式
1. AI通过特定格式请求调用工具
2. 系统执行相应功能
3. 返回结果供AI继续处理
三、Planning(规划模式):实现任务自主分解
📊 运作机制
Planning模式使AI能够将复杂任务分解为多个步骤,并制定执行计划。
🔄 规划流程
- 任务分析
-
理解目标需求
-
识别关键步骤
-
确定依赖关系
- 策略制定
-
设计执行路径
-
选择合适工具
-
安排执行顺序
- 动态调整
-
监控执行情况
-
处理异常情况
-
优化执行计划
⚠️ 使用建议
-
适合复杂多步骤任务
-
需要具备容错和调整机制
-
建议保持人工监督
四、Multi-agent collaboration(多智能体协作):集体智慧的力量
👥 协作模式
多个AI Agent共同工作,各司其职,互相配合完成任务。
📈 运作方式
- 角色分工
-
生成者:负责创造内容
-
评审者:负责质量控制
-
优化者:负责改进完善
-
协调者:负责任务管理
- 互动机制
-
信息共享
-
观点讨论
-
结果整合
- 协同优化
-
交叉验证
-
互补增强
-
共同进步
🎁 优势特点
-
提升问题解决质量
-
增强处理复杂任务的能力
-
实现多角度思考
总结与思考
这四种设计模式各有特点:
-
Reflection注重质量提升
-
Tool Use扩展能力边界
-
Planning实现自主决策
-
Multi-agent实现协同增效
技术成熟度:
-
Reflection和Tool Use相对成熟,效果可预期
-
Planning仍在发展中,需要更多实践验证
-
Multi-agent最具创新性,但也最具挑战
💡 选择合适的模式需要考虑:
-
任务复杂度
-
质量要求
-
资源约束
-
风险承受能力
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。