标题: HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling
代码: https://github. com/bytedance/HLLM
1. 前言
基于ID的推荐系统一般都是Embedding参数量很大而模型参数量较小,这种ID-based的模型主要存在两个问题:
-
冷启乏力: 严重依赖ID特征导致在冷启动场景中表现不佳
-
能力欠佳: 相对浅层的网络模型难以建模复杂且多样的用户兴趣
随着近年来LLM的突破性进展, 业界也在不断探索LLM在推荐系统中的应用, 这里大概可以分成三类:
-
信息增强: 利用LLM为推荐系统提供一些精细化的信息, 例如做Item的特征增强
-
对话式处理: 将推荐系统转换为与LLM兼容的对话驱动形式
-
直接输入ID: 修改LLM不再仅处理文本输入/输出, 比如直接输入ID特征给LLM
当前, LLM4Rec还面临着一些挑战, 比如在处理相同时间跨度的用户行为序列时, 使用文本作为输入的LLM要比ID-based方法需要处理更长的序列长度, 且计算复杂度更高。此外, 基于LLM的方法远没有其它领域那么显著的提升。
作者提出, 关于LLM4Rec还有三个关键问题还需要再探索的:
-
预训练LLM权重的真正价值: LLM大规模预训练本质上是在做一个世界知识的压缩, 其权重蕴含着世界知识, 但使用大规模推荐数据训练时, 这些权重的真正价值还尚未挖掘。
-
有必要对推荐任务进行微调吗? 还不清楚进一步使用推荐任务微调是否有收益。
-
LLM在推荐场景中能否呈现Scaling Law? 在更大规模的参数下, LLM4Rec是否也能像其它场景一样具有Scaling Law呢, 还未有结论。
基于此, 作者提出了Hierarchical Large Language Model(HLLM)方法,下面进行详细介绍。
2. 方法
HLLM的整体框架如下图所示, 分为Item LLM和User LLM。
2.1 Item LLM
Item LLM的作用是作为特征提取器, 如下图所示, 使用Item的标题、标签、描述的文本信息作为输入, 并在最后位置额外增加了一个特殊Token 。
最终的输入为, 其中为文本token的长度, 而特殊Token对应的输出则作为该Item的Embedding。
该段理解有误, 论文AB有提细节。忽略:论文没有提及Item LLM具体的预训练方式, 但笔者觉得这个才是最核心的地方。论文后面的实验部分有提及说Item LLM要使用推荐目标做微调会更好, 但没说在这一阶段推荐数据如何构造, 推荐目标具体如何微调。如果只是next token prediction的训练微调, 那纯粹只是学习Item的语义信息, 笔者感觉效果可能不会很好。参考业界小红书NoteLLM使用共现笔记做GCL实现微调, 相比而言, 笔者更倾向于相信作者也做了类似的事情, 引入了推荐用户行为信号去做微调。这里有其它看法的小伙伴也欢迎留言讨论。
2.2 User LLM
User LLM的输入是用户历史交互序列, 前面的Item LLM就起到传统深度模型的Embedding Lookup Table的作用, 这样就将用户行为序列转化成。
然后, 再将这些Embedding作为输入, 进行Next Item Prediction, 预测下一位置的Item Embedding。这里User LLM对于Next Item Prediction的训练目标, 按照训练方式的差异, 可以分成生成式推荐与判别式推荐, 而HLLM同时使用了这两种。
2.2.1 生成式推荐训练方式
使用大模型自回归的训练方式, 使用InfoNCE来作为生成损失, 对于模型第位置输出的Embedding , 将第个位置输入的Embedding , 构成pair对()当作正样本:
其中, 是一个相似度函数, 表示第个用户用户序列第个位置Item所对应的Embedding, 表示由用户LLM为第个用户预测的第个位置的Embedding, 为负采样的数量, 表示第个负样本的Embedding, 表示Batch中的用户总数, 表示用户历史行为交互的长度
2.2.2 判别式推荐训练方式
判别式推荐的训练方式主要有两种: Early Fusion和Late Fusion, 作者在实际在落地使用的是Late Fusion。
1) Early Fusion
Early Fusion是将Target Item的Embedding 拼接在用户行为序列的最后, 再输入给User LLM, 然后再将对应位置的输出做分类预测。Early Fusion方式的优点是, Target Item可与用户行为序列在User LLM中进行充分的特征交叉, 它的效果一般会更好, 但效率较低。
2) Late Fusion
Late Fusion首先在用户行为序列的最后拼接一个特殊Token , 类似Item LLM的方式, 再使用User LLM编码用户行为序列, 提取得到用户的Embedding(即位置对应的输出), 再将其与拼接起来去预测分类。Late Fusion在后期再实现特征交叉, 效果一般会差一些, 但在推理时效率更高。比如当Prediction Head是使用内积去计算User Embedding与Target Item的Logit时, 那Late Fusion的User LLM就是一个双塔模型, 就可以直接使用向量索引做召回。
对于预测部分, 它是个二分类问题,训练损失函数如下:
其中,表示训练样本的Label, 表示预测的logit。
2.2.3 整体训练Loss
这里, 作者同时使用生成式和判别式的损失, 将它们做加权融合:
其中, 是生成式辅助Loss的权重系数。
此外, 可能有读者会有疑惑, User LLM和Item LLM是联合训练的吗。笔者认为它们是独立训练的, 这里主要原因是不具备联合训练的条件, Item LLM的输入为Item的文本描述, 而User LLM的输入为各Item的Embedding, End2End训练的话, 成本太高, 可能并不现实。
3. 实验部分
3.1 LLM预训练及推荐目标微调的作用
LLM有无预训练对推荐效果的影响 -> 结论:无论是Item LLM还是User LLM,基于预训练微调更好
预训练权重的质量与推荐效果的影响 -> 结论: 预训练使用的Token越多, 推荐效果越好, 此外, 增加对话场景的SFT对推荐场景并无收益。
使用推荐目标做微调的影响 -> 结论: 无论是Item LLM还是User LLM,都非常有必要使用推荐目标做微调。
3.2 HLLM是否具有Scaling Law
坦白说, 这部分实验做的没啥说服力, 看看就好。
Item LLM部分
User LLM部分
3.3 对比基线
整体效果
3.4 训练和 Serving 效率
与HSTU的对比, 结论: 仅需要1/6~1/4的数据就可达到HSTU的同等水平
推理时, 可使用Item Cache方法提效, 虽然效果会有一定下降, 但仍好于HSTU
3.5 线上AB
关键指标提升了0.705%.
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。