为解决传统目标检测在复杂环境下效果不佳等问题,研究者们提出了多模态融合目标检测。
通过整合来自多个传感器的数据,充分利用不同传感器的优点,多模态融合目标检测能够更全面地捕捉目标信息,显著提高检测的准确性和鲁棒性,以及模型在各种环境条件下的适应能力。
因此,这种深度学习方法逐渐成为了主流,相关的最新研究成果非常丰富。比如Fusion-Mamba,在公共RGB-IR数据集上实现最佳性能;Fully Sparse Fusion,在推理速度上超越SOTA方法2.7倍。
Fusion-Mamba for Cross-modality Object Detection
**方法:**论文提出了Fusion-Mamba,用于改善不同模态之间的目标检测性能。具体来说,该方法通过在隐状态空间中关联跨模态特征来进行融合,并通过改进的Mamba和门控机制来减少跨模态特征之间的差异,增强融合特征的表示一致性。
创新点:
- 作者引入了一种名为Fusion-Mamba的新方法,该方法首次利用Mamba进行多模态特征融合。在Fusion-Mamba中,作者设计了两个模块:SSCS模块用于浅层特征融合,DSSF模块用于在隐藏状态空间中进行深层特征融合。通过这两个模块,Fusion-Mamba方法能够减小模态之间的差异,并提高特征融合的一致性和表达能力。
- 作者引入了一种名为2D选择性扫描机制,用于解决二维视觉数据和一维语言序列之间的不兼容性。SS2D机制通过将图像补丁沿四个不同方向进行扩展,生成四个独立的序列,并利用这些序列建立全局感受野。这种选择性扫描机制能够在不增加计算复杂度的情况下,捕获潜在的相关性,从而建立全面的全局感受野。
Fully Sparse Fusion for 3D Object Detection
**方法:**本文提出了一种名为Fully Sparse Fusion(FSF)的多模态全稀疏感知框架。该框架通过实例级别融合,将图像信息与LiDAR信息无缝集成,解决了LiDAR-only全稀疏检测器的局限性。FSF框架主要包括双模态实例生成模块和双模态实例预测模块,以及一种双模态实例标签分配策略。
创新点:
- FSF是一种全稀疏的多模态感知框架,通过实例级融合而不引入任何密集的BEV特征图。
- FSF无缝集成了2D实例分割和3D实例分割,通过双模态实例生成和双模态基于实例的预测,充分发挥了两个领域的优势。
- FSF在nuScenes数据集、Waymo Open Dataset和Argoverse2数据集中实现了最先进的性能。特别是在Argoverse2数据集中的长距离检测中,FSF比之前最先进的多模态检测器快2.7倍。
Is-fusion: Instance-scene collaborative fusion for multimodal 3d object detection
**方法:**论文提出一种创新的多模态融合框架IS-FUSION,用于多模态三维物体检测,通过联合建模多模态实例级和场景级上下文,并有效地增强BEV表示,实现了在竞争性nuScenes基准上的卓越性能,超过了所有现有的3D检测算法。
创新点:
- IS-FUSION引入了HSF模块和IGF模块,这两个模块能够捕捉到实例级别和场景级别的多模态信息,并且通过增强两者之间的协作来改善BEV表示。
- IS-FUSION的HSF模块采用了Point-to-Grid和Grid-to-Region transformer attentions来分层提取多模态特征,并能够在不同的粒度上捕捉到场景的上下文信息。IGF模块则通过挖掘实例候选对象、探索实例之间的关系以及聚合局部多模态上下文来增强场景特征,从而获得实例感知的BEV表示。
Transformer-Based Optimized Multimodal Fusion for 3D Object Detection in Autonomous Driving
**方法:**论文介绍了一个基于多模态融合的三维物体检测模型,通过使用体素作为统一的表示方法。研究利用自注意力和交叉注意力机制的Transformer解码器来提高检测性能,并证明了将多分辨率注意力模块和离散小波变换/反离散小波变换(DWT/IDWT)集成到主干网络中可以改善模型性能。
创新点:
- 开发了一种多模态融合模型,利用体素作为统一的表示方法,提高了三维物体检测的性能。
- 使用Transformer解码器通过自注意力和交叉注意力机制来增强检测性能,实现了全局交互。
- 利用剪枝和量化等网络优化技术,显著减少了内存和计算资源的需求,提高了模型的效率和性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。