摘要
定义代谢健康对于早期逆转代谢功能障碍和疾病至关重要,基于禁食的诊断可能无法充分评估个体在应激下的代谢适应性。研究者构建了一个新的健康状况图谱(Health State Map, HSM),包括仅使用空腹特征的健康表型评分(Health Phenotype Score,HPS)和仅使用标准化混合宏观营养素耐受性测试(MMTT)后5个时间点特征的稳态弹性评分(Homeostatic Resilience Score,HRS)。在111名中国成年人中,使用与HSM相同的空腹和MMTT后数据集的混合评分与HPS高度相关。HRS与代谢综合征的发生率显著相关,独立于HPS和混合评分。此外,HRS能够区分HPS和混合评分无法区分的代谢特征。参与者中HRS越高,其代谢特征越好。在整体HRS相似的情况下,评估餐后对葡萄糖、脂质和氨基酸的体内稳态响应也存在很大的个体间差异。此外,HRS与体力活动水平和特定肠道微生物组结构呈正相关。总的来说,HSM模型可能提供了一种新的方法来精确定义个体的代谢健康和营养能力。
代谢健康不仅仅意味着没有疾病,它是一种全面的健康状态。由于缺乏具体的量化标准或手段,个体的代谢健康状况通常由临床疾病诊断来定义。然而,这种方法的缺点在于,它几乎完全基于空腹时的临床生物标志物,而现实生活中的人们大多数时间处于餐后状态。先前的研究表明,餐后生物标志物,如血糖和三酰甘油(TAG)水平,即使在正常空腹范围内,也是心血管疾病(CVD)和2型糖尿病(T2D)的独立风险因素。因此,迫切需要创新的概念和策略来重新定义代谢健康,以发现增加的代谢风险的早期轨迹,并提供更有针对性的营养干预。
参与者的基线特征在HSM组和两个参考组中进行了比较。与相似年龄的正常体重参与者相比,超重/肥胖参与者通常表现出更低的体力活动水平和更差的心血管代谢特征。两个参考组的基线特征也根据年龄、BMI和主要临床特征进行了展示。如预期,最佳健康组的参与者比亚最佳健康组的参与者在收缩压、空腹血糖、糖化血红蛋白和TAG水平上显著降低。
这是第一项显示HSM,一个二维模型,与混合评分系统相比,即使使用相同的特征集,也能为定义代谢健康提供更多信息的研究,尤其是在111名20-70岁的中国个体中。HRS能够区分HPS或混合评分无法区分的参与者的代谢特征,并揭示了在相同整体稳态弹性评分下,对葡萄糖、脂质和氨基酸的不同响应。HPS和HRS可能受到体力活动和特定肠道微生物组结构的影响。因此,我们的新型HSM可能提供了一种更全面、更早、更敏感的替代方法来定义代谢健康和营养能力,这对未来临床应用是有用的。
总体而言,这项概念验证研究的结果突出了HSM,特别是HRS,可能增强当前的诊断能力,以检测代谢功能障碍和受损个体对饮食挑战的适应性。虽然有待未来的更多验证和改进,但这种二维HSM可能提供了一种新的、非基于疾病的框架,用于精确定义代谢健康和营养功能,以便早期和针对性的疾病干预。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。