在智能科技日新月异的今天,强化学习作为优化决策的重要工具,已经在许多领域展现出巨大潜力。
然而,当这些技术从仿真环境走向现实世界时,它们面临着一个共同的挑战:如何在感官信息有限且不完美的情况下做出有效决策。
剑桥大学的博士论文《深度记忆模型与部分可观察下的高效强化学习》正是在这样的背景下应运而生,深入探讨了如何利用记忆机制来提升强化学习的效率和效果。
论文首先指出,现实世界中的决策任务常常伴随着噪声和信息的不完整性,这使得传统的强化学习模型难以直接应用。
为了解决这一问题,研究者们提出了利用记忆来弥补感官信息不足的策略。
记忆,作为人类和其他生物决策过程中的关键因素,能够存储和回忆过去的经验,帮助生物体在不确定性中做出更好的决策。
在论文中,研究者们提出了一种新颖的记忆模型,这种模型能够利用已有的先验知识动态构建记忆图,从而提高数据和参数的效率。这一创新不仅在理论上具有重要意义,而且在实际应用中也展现出了巨大的潜力。
接着,论文讨论了对记忆模型的大规模研究。研究者们设计了一系列程序化生成的任务,并在这些任务上评估了不同记忆模型的性能。通过实践性的方法,论文确定了哪些模型更具潜力,为未来的研究节省了宝贵的时间和计算资源。
论文还探讨了基于计算心理学的人类记忆模型,并据此开发了一种新的模型,这种模型在时间和空间效率上都超越了标准模型。这一发现不仅在理论上具有突破性,而且在实际应用中也显示出了优越性。
最后,论文提出了一个统一的理论框架,用于高效的记忆建模,涵盖了许多现有的记忆模型。在这个框架下,研究者们提出了一种新的训练记忆模型的方法,进一步提高了时间、空间和数据的效率。这一成果为强化学习在部分可观察环境下的应用开辟了新的可能性。
论文目录
通过这些研究,论文不仅为强化学习领域提供了新的视角和工具,也为未来的记忆模型研究和应用奠定了坚实的基础。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。