🚀 快速阅读
-
功能:GraphAgent 能够自动构建知识图谱,解释用户查询并执行任务。
-
技术:结合图神经网络和大型语言模型,处理复杂的数据关系。
-
应用:广泛应用于学术网络分析、电子商务推荐和金融风险管理等领域。
正文(附运行示例)
GraphAgent 是什么
GraphAgent 是香港大学和香港科技大学(广州)联合推出的智能图形语言助手,能够处理现实世界中结构化(如图连接)和非结构化(如文本、视觉信息)格式的数据。这些数据包含复杂的关系和相互依赖性,可以通过知识图谱进行展示。
GraphAgent 包括三个关键组件:图生成代理构建知识图谱,任务规划代理解释用户查询并制定任务,任务执行代理执行任务、自动化工具匹配。GraphAgent 整合语言模型与图语言模型,揭示数据间复杂的关系和语义依赖性,在多种图相关任务上展示有效性。
GraphAgent 的主要功能
-
图生成:自动构建知识图谱,反映复杂的语义依赖关系,从文本中提取实体节点和关系。
-
任务规划:解释用户查询,将用户的需求转化为具体的预测或生成任务,规划执行策略。
-
任务执行:执行规划好的任务,包括自动化工具匹配和调用,响应用户查询。
-
自然语言交互:支持用户用自然语言与系统交互,无需专业知识即可分析图数据。
-
预测分析:支持基于图的预测任务,如节点分类和链接预测。
GraphAgent 的技术原理
-
异构图表示:用异构图表示结构化和非结构化数据,捕捉实体间的关系。
-
图神经网络:图神经网络作为图Tokenizer,将图结构信息编码为嵌入表示。
-
大型语言模型:结合预训练的大型语言模型来理解和生成自然语言,与图结构信息结合。
-
代理架构:设计一个多代理系统,每个代理负责处理不同的任务,如生成、规划和执行。
-
图-指令对齐:基于图-指令匹配任务训练大型语言模型,更好地理解和处理图结构数据。
如何运行 GraphAgent
1. 安装
# 克隆仓库 git clone https://github.com/yourusername/GraphAgent.git cd GraphAgent # 创建 conda 环境 conda create -n graphagent python=3.11 conda activate graphagent # 安装 GraphAgent 推理所需的依赖 pip install -r GraphAgent-inference/requirements.txt
2. 获取预训练模型
我们提供了多个预训练模型,您可以从 Hugging Face 下载这些模型,并将其路径替换到 GraphAgent-inference/run.sh
中。
3. 设置规划器和 API 令牌
我们使用基于 API 的 LLM 调用进行任务规划和图生成。默认的规划器是 deepseek
,您可以在 GraphAgent-inference/run.sh
中设置 API 密钥。
4. 推理示例
bash GraphAgent-inference/run.sh >>> 请输入用户指令或文件路径(或输入 'exit' 退出): # 使用 GraphAgent-inference/demo/use_cases/teach_me_accelerate.txt 作为示例 >>> 请输入用户指令或文件路径(或输入 'exit' 退出):GraphAgent-inference/demo/use_cases/teach_me_accelerate.txt
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。