Cell Reports Medicine近期的研究结合microRNA与影像组学,提出一种面向患者术后腹膜后肿块组织学性质的分类算法。该研究将研究重点放在解决单一方法缺陷的思路极具参考价值。
引言
过度化疗是非精原细胞肿瘤患者常见的问题,特别是在接受过铂类化疗后的残余腹膜后肿块患者中。过度化疗不仅增加了患者的治疗负担,还可能引发严重的副作用。通过预测模型区分坏死/纤维化组织、活性生殖细胞肿瘤以及畸胎瘤,对于降低患者的治疗风险至关重要。
通过影像组学将医学影像转化为高维数据,能够提高机器学习算法的预测准确性。然而,由于影像组学可解释性较差且在畸胎瘤、活性生殖细胞肿瘤区分任务中存在局限性,使得单凭影像组学难以实现精准的预测。
Cell Reports Medicine近期的研究结合microRNA与影像组学进行综合诊断,显著提升了肿块成分的区分能力,对辅助制定个性化治疗方案起到积极的促进作用。
数据及方法
该研究纳入了2014年9月至2022年8月期间的105名患者进行预测模型的开发,其中75名患者作为训练集,30名患者作为验证集。同时,该研究纳入了2022年10月至2024年6月期间34名患者作为测试集。该研究首先基于多种机器学习算法构建影像组学评分,然后利用Logistic回归构建影像组学-miRNA的融合模型,最后通过统计分析方法对预测模型的效果进行评估。
影像组学模型构建主要包括ROI勾画、特征工程和机器学习模型构建三个关键环节。在ROI勾画环节中,该研究通过经验丰富的放射科医生手动选择CT影像中最具代表性的肿瘤切面,实现对患者残余后腹膜肿块精确的三维区域勾画。在特征工程环节中,该研究使用Pyradiomics提取了包括一阶统计特征、纹理特征在内的1130个特征,并通过一系列数据预处理和筛选步骤(如一致性检验、相关性分析、LASSO回归等)进一步筛选出与组织病理结果相关的特征。在机器学习模型构建环节中,该研究选定了六种机器学习算法,通过贝叶斯优化、网格搜索等调参手段构建了预测模型。
该研究采用晚期融合方法构建融合模型。该研究基于影像组学模型的预测概率与miRNA数据,使用逻辑回归方法建立新的模型。该模型综合了影像组学与miRNA信息的优势,能够有效地区分患者术后腹膜后肿块的组织学性质。
该研究采用多种指标评估模型效果,包括ROC曲线、校准曲线、决策曲线、DeLong检验、Brier得分以及AIC等。
总结
该研究针对单一方法的局限性,融合影像组学与血清microRNA提出了一种面向患者术后腹膜后肿块组织学性质的分类算法。该研究的参考价值在于其针对影像组学单一方法的缺陷,提出结合microRNA构建融合模型的解决方案。参照这种思路,各位读者在自己的研究中并不需要追求建模方法的新颖性,大可以将重点放在挖掘单一方法的局限性。针对这种局限性,即便是通过常规的、简单的方法融合多组学特征,依旧可以发表高水平研究成果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。