本地Ollama部署DeepSeek R1模型接入Word

要想实现DeepSeek与Word的结合,我们也可以通过本地部署的方式进行。

本地部署的优势如下:

1.响应速度快

本地处理减少网络传输,响应速度更快。且本地部署的稳定性更强,不受网络波动影响,确保服务持续可用。

2.数据隐私与安全

文本数据无需上传至外部服务器,降低了泄露风险。3.完全免费虽然DeepSeek的API key费用极低,但在高强度的办公场景下仍需要消耗一笔费用。本地部署模型能够做到完全免费,不花一分钱。接下来,本文将讲述如何本地部署DeepSeek-R1模型,并将其集成到Word中。

1.本地部署DeepSeek-R1模型

访问ollama官网,点击download。https://ollama.com/

根据电脑系统选择相应的版本。点击下载。若下载速度过慢,可关注公众号并回复“ollama”领取安装包。

打开下载的安装包,点击“Install”

等待安装完成后,按win+r键,输入cmd调出命令行窗口。

输入

ollama --version

按下回车后出现版本号,即为安装成功。

我们选择推理能力更强的deepseek-r1模型进行本地部署。小编的笔记本显存为6G,因此选择最小的1.5b模型进行部署,如果显存更大的话,可以选择更大的模型。

在命令行窗口中输入:

ollama run deepseek-r1:1.5b

按下回车,模型开始自动下载。

模型下载成功后,自动进入对话模式,我们可以在这里跟模型进行对话。

至此,恭喜你已经完成了deepseek-r1模型的本地部署。

2.接入Word

在进行接下来的操作之前,如何利用API key来调用云端的大模型,而本文讲的是调用本地部署的模型,请按照进行Word端所有的操作,但在复制代码时,替换为下面的代码:

Function CallDeepSeekAPI(api_key As String, inputText As String) As String`    `Dim API As String`    `Dim SendTxt As String`    `Dim Http As Object`    `Dim status_code As Integer`    `Dim response As String`               `' 本地部署的大模型API地址`    `API = "http://localhost:11434/api/chat"`        `' 修改请求体为与本地大模型相匹配的格式`    `SendTxt = "{""model"": ""deepseek-r1:1.5b"", ""messages"": [{""role"":""user"", ""content"":""" & inputText & """}], ""stream"": false}"`               `Set Http = CreateObject("MSXML2.XMLHTTP")`    `With Http`        `.Open "POST", API, False`        `.setRequestHeader "Content-Type", "application/json"`        `.setRequestHeader "Authorization", "Bearer " & api_key`        `.send SendTxt`            `status_code = .Status`        `response = .responseText`    `End With`               `' 弹出窗口显示 API 响应(调试用)`    `' MsgBox "API Response: " & response, vbInformation, "Debug Info"`               `If status_code = 200 Then`        `CallDeepSeekAPI = response`    `Else`        `CallDeepSeekAPI = "Error: " & status_code & " - " & response`    `End If`               `Set Http = Nothing``End Function`           `Sub DeepSeekV3()`    `Dim api_key As String`    `Dim inputText As String`    `Dim response As String`    `Dim regex As Object`    `Dim matches As Object`        `Dim originalSelection As Object`               `api_key = "pass"`    `If api_key = "" Then`        `MsgBox "Please enter the API key."`        `Exit Sub`    `ElseIf Selection.Type <> wdSelectionNormal Then`        `MsgBox "Please select text."`        `Exit Sub`    `End If`               `' 保存原始选中的文本`    `Set originalSelection = Selection.Range.Duplicate`               `inputText = Replace(Replace(Replace(Replace(Replace(Selection.Text, "\", "\\"), vbCrLf, ""), vbCr, ""), vbLf, ""), Chr(34), "\""")`    `response = CallDeepSeekAPI(api_key, inputText)`               `If Left(response, 5) <> "Error" Then`        `Set regex = CreateObject("VBScript.RegExp")`                `' 步骤1:提取大模型回复内容`            `With regex`            `.Global = True`            `.MultiLine = True`            `.Pattern = """content"":\s*""([\s\S]*?)"""  ' 更稳健的提取逻辑`        `End With`        `If regex.Test(response) Then`            `response = regex.Execute(response)(0).SubMatches(0)`                        `' 步骤2:处理Unicode转义字符(如\u003c -> <)`            `response = Replace(response, "\u003c", "<")`            `response = Replace(response, "\u003e", ">")`                        `' 步骤3:删除标签及其内容`            `With regex`                `.Global = True`                `.MultiLine = True`                `.IgnoreCase = True`                `.Pattern = "[\s\S]*?"`            `End With`            `response = regex.Replace(response, "")`                        `' 步骤4:转换\n为实际换行符`                `response = Replace(response, "\n", vbCrLf)`                        `' 步骤5:移除Markdown格式`            `With regex`                `.Global = True`                ``.Pattern = "(#+\s*|\*\*|__|`|\*{1,2}|_{1,2}|~~|^>\s)"``                `response = .Replace(response, "")`            `End With`            `response = regex.Replace(response, "")`                       `' 取消选中原始文本`            `Selection.Collapse Direction:=wdCollapseEnd`                       `' 将内容插入到选中文字的下一行`            `Selection.TypeParagraph ' 插入新行`            `Selection.TypeText Text:=response`                       `' 将光标移回原来选中文本的末尾`            `originalSelection.Select`        `Else`            `MsgBox "Failed to parse API response.", vbExclamation`        `End If`        `Else`        `MsgBox response, vbCritical`    `End If``End Sub

此代码在上一次代码的基础上进行了优化,对大模型md格式的输出进行了优化,去掉了md格式的修饰,只保留纯文本;在上一个版本中,大模型输出的“\n”会被当做文本显示,而此版本的代码直接将“\n”当作回车处理,结果更加美观。

替换代码后,即可实现本地大模型的Word调用。

3.效果演示

选中文本后,点击生成,即可看到大模型的回复。

4.问题反馈

此外,还有读者反应,会出现“配置完之后重启word配置的宏消失的问题”,这个问题的解决办法如下:

点击 开发工具 -> 宏。

选中我们配置的DeepSeekV3,点击管理器。

选中左侧的模块1,点击复制,右侧将会出现模块1,最后点击关闭。

问题顺利解决,再次重启word后,不会出现宏消失的问题。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 集成DeepSeek至Microsoft Word 为了在Microsoft Word中集成DeepSeek并实现本地部署,确保已按照官方指南完成必要的前置条件设置。这包括确认本地Ollama服务处于运行状态,并且DeepSeek 1.5b模型已经被下载完毕[^2]。 #### 安装OfficeAI插件 对于希望利用DeepSeek增强Word功能的用户来说,第一步是安装OfficeAI插件。该插件作为桥梁,使得DeepSeek的各项能力能够无缝接入Word环境中[^3]。 ```bash # 假设从官方网站获取最新版OfficeAI插件包 wget https://example.com/download/officeai-plugin-latest.zip unzip officeai-plugin-latest.zip -d /path/to/installation/directory/ ``` #### 设置API访问权限 一旦插件安装就绪,在Word界面内找到对应于DeepSeek配置的部分。“大模型”列表里挑选适合当前应用场景的版本——比如针对常规任务可选用`deepseek-chat (DeepSeek-V3)`;而对于涉及更深层次逻辑运算的任务,则推荐采用`deepseek-reasoner (DeepSeek-R1)`型号。紧接着输入有效的API密钥来授权使用这些高级特性[^4]。 ```python api_key = "your_deepseek_api_key_here" configurations = { 'model': 'deepseek-chat', # 或者 'deepseek-reasoner' 'key': api_key, } apply_configuration(configurations) ``` #### 实现特定功能定制 借助上述准备工作完成后,即可着手开发自定义脚本或宏命令以调用DeepSeek所提供的接口。例如,创建一个用于辅助撰写文档的小工具: ```javascript function generateText(prompt) { const endpoint = "/v1/knowledge/search"; fetch(endpoint, { method: 'POST', headers: {'Content-Type': 'application/json'}, body: JSON.stringify({query: prompt}) }) .then(response => response.json()) .then(data => insertIntoDocument(data.result)); } // 将生成的内容插入到活动文档中指定位置 function insertIntoDocument(text) { let doc = DocumentApp.getActiveDocument(); let cursor = doc.getCursor(); if(cursor){ cursor.insertText(text); } } ``` 以上过程概述了怎样把DeepSeek融入到Microsoft Word当中去的方法论框架,从而让用户享受到更加智能化的文字处理解决方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值