作为Excel 的高级用户,我今天与大家分享如何在Excel中快速接入DeepSeek大模型的方法。
当然,只要你的模型调用是符合OpenAPI规范的,都可以用同样的方法从Excel文件中来调用。
先上一个最后的效果图。
有了这个Excel 文件后,在文件的“Settings” sheet中配置后,用户在问题格(黑色格)中输入问题,点击“发送”按钮,依据你的模型运行速度,就可以很快在大模型回答格(淡蓝色格)中看到答案。
基本工作原理是Excel是支持使用VBA语言编程的。在这个Excel文件里面我用VBA写了一个程序。这个程序来读以下“settings” sheet中的模型地址和设置,然后根据地址来向大模型服务发送请求。 这个大模型服务可以是你本地部署的ollama,也可以是你注册的其它大模型云端服务。云端服务需要从服务商获得API KEY,并设置在Settings sheet中的相应格子中,本地部署的不用API KEY,你就随便写一个就好。
模式一。全部程序都在本地,无需联网。
模式二。 你的Excel 去调用远程的云端大模型服务,需要去找个大模型云端服务商进行注册,并获得地址和API Key
本文主要是介绍如何构建这个deepseekdemo.xlsm Excel 文件。
具体构建这个Excel文件只需要五步,就可以在文件中调用Deepseek 模型了!
步骤1. 打开Excel 的开发工具窗口。
步骤2. 输入VBA程序(后面有)
步骤3. 设置range 名称
步骤4. 在worksheet “Settings” 中设置模型地址和模型名称参数。
步骤5. 创建发送按钮。保存Excel
完成五个步骤后,回到第一个Sheet,输入你的问题,就可以看到前面的效果了。
好了,我们开练吧
步骤1. 打开Excel 的开发工具窗口。
1.1 打开Excel,如果看不到“开发者工具”菜单 按下Alt + F11
直接打开VBA编辑器。
VBA编辑器打开后如下图。
步骤2. 输入VBA程序(后面有)
2.1 在上图的红色圈子中右点鼠标插入Excel VBA 模块。
插入后,VBA程序编辑界面出现了。
2.2 你可以先把模块1名字改成:modLLM。 然后在右边窗口copy进下面VBA程序。
Public Function CallLLM(strUserQry As String)` `Dim question As String` `Dim response As String` `Dim p_url As String` `Dim p_apiKey As String` `Dim http As Object` `Dim content As String` `Dim startPos As Long` `Dim endPos As Long`` ` `question = strUserQry`` ` `p_url = Trim(Range("pmodelurl").Cells(1, 1).Value)` `p_apiKey = Trim(Range("pmodelapikey").Cells(1, 1).Value)`` `` ` `Set http = CreateObject("MSXML2.XMLHTTP")`` `` ` `http.Open "POST", p_url, False` `http.setRequestHeader "Content-Type", "application/json"` `http.setRequestHeader "Authorization", "Bearer " & p_apiKey`` ` `Dim requestBody As String` `requestBody = "{""model"":""" & Trim(Range("pmodelname").Cells(1, 1).Value) & """,""messages"":[{""role"":""user"",""content"":""" & question & """}]}"`` ` `http.send requestBody`` `` ` `Dim strContent As String`` ` `If http.Status = 200 Then` `response = http.responseText` `startPos = InStr(response, """content"":""") + Len("""content"":""")` `endPos = InStr(startPos, response, """},")` `content = Mid(response, startPos, endPos - startPos)` `strContent = ConvertUnicodeToText(content)` `Else` `strContent = "Error: " & http.Status & " - " & http.statusText` `End If` `CallLLM = strContent``End Function`` ``Function ConvertUnicodeToText(ByVal mixedText As String) As String` `Dim regex As Object` `Dim matches As Object` `Dim match As Object` `Dim unicodeCode As String` `Dim convertedText As String`` ` `' 创建正则表达式对象` `Set regex = CreateObject("VBScript.RegExp")` `regex.Pattern = "\\u([0-9A-Fa-f]{4})"` `regex.Global = True`` ` `' 执行正则表达式匹配` `Set matches = regex.Execute(mixedText)`` ` `convertedText = ""` `Dim i As Long` `For i = 0 To matches.Count - 1` `Set match = matches(i)` `unicodeCode = match.SubMatches(0)`` ` `' 将Unicode编码转换为字符` `convertedText = convertedText & ChrW("&H" & unicodeCode)`` ` `' 保留匹配之间的原始文本` `If i < matches.Count - 1 Then` `Dim startPos As Long` `Dim endPos As Long` `startPos = match.FirstIndex + match.Length` `endPos = matches(i + 1).FirstIndex` `convertedText = convertedText & Mid(mixedText, startPos + 1, endPos - startPos)` `Else` `' 最后一个匹配之后的所有文本` `convertedText = convertedText & Mid(mixedText, match.FirstIndex + match.Length)` `End If` `Next i`` ` `' 如果没有匹配到任何Unicode编码,则直接返回原始文本` `If convertedText = "" Then` `ConvertUnicodeToText = Replace(mixedText, "\n", vbCrLf)` `Else` `ConvertUnicodeToText = Replace(convertedText, "\n", vbCrLf)` `End If``End Function
这时窗口应该是这样的:
关闭,保存VBA程序窗口。 回到Excel界面。
步骤3. 设置range 名称
因为我在程序中使用了命名的Range,需要先设置几个Range 名字。
3.1 增加一个“Settings”的sheet。 名字一定要叫“Settings"
3.2. 在settings zhong,输入以下三行信息(黑色背景)。
把这三个cell分别命名成“Named Range” 名称为:pmodelurl, pmodelname,pmodelapikey
不知道什么叫“Named Range", 去查Excel 文档。
3.3. 回到Sheet1, 在Sheet1中按照下面布局输入。
3.4 然后将问题部分命名”Named Range“ 名字为: puserquery. 把大模型回答cell命名为:pllmanswer.
命名完成后,在下图位置下拉可以看到这几个“Named Range”
步骤4. 在worksheet “Settings” 中设置模型地址和模型名称参数。
点击“Settings” sheet, 保证这三个参数是正确的。
模式一。 本地部署ollama的,这里你只需要改一个地方:模型名称改到你的ollama支持的模型名称。 模型名字一定要匹配ollama的。 那你可以输入哪些具体模型名字呢?在命令行,输入:ollama list
模式二。使用云端大模型服务的, 你需要从云服务商获得模型地址和模型API key,和支持的模型名称。输入这三个。
步骤5. 创建发送按钮。保存Excel
5.1 在sheet1 中,找到”开发者工具“菜单,点击添加按钮。
鼠标变成十字星,选择在C2 cell位置画一下,就会弹出这样的宏窗口。
5.2 点击“新建”。 出现宏编辑窗口。
5.3 在宏编辑窗口输入下面代码。
Range("pllmanswer").Cells(1, 1).Value = CallLLM(Trim(Range("puserquery").Cells(1, 1).Value))
5.4 关闭VBA代码编辑回到Excel Sheet1, 保存。 注意:一定要选择“xlsm” 格式保存!!。 否则VBA代码不会保存。
现在大功告成了, 你可以输入问题,等待大模型回答了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。