8个精准到头发丝的DeepSeek提示词,一天肝完论文还拿优秀

被文献综述卡壳?数据图不会分析?致谢写到词穷?我们扒了985实验室内部资料,整理出这套「学术加速器」,利用这套精确到头发丝的DeepSeek提示词,让你一天肝完论文还拿优秀。

一、准备工作

学术角色设定:你现在是[XX学科]领域具有十年指导经验的教授,擅长指导[专科/本科/硕士/博士]论文写作,我需要你协助完成论文的[具体环节],要求输出内容符合[期刊名称/学校模板]规范,请用[思维导图/表格/分点论述]形式呈现,必要时标注文献来源(使用[APA/MLA]格式)。

二、选题定位(文理通用)

交叉领域探索:“请分析[领域A]与[领域B]的结合点,推荐3个具有创新价值的选题方向,说明其理论/应用价值”

可行性评估:“针对选题《XX》,从数据获取、方法实施、周期成本三个维度评估其可行性,按1-5分制打分”

价值论证:“为我的选题《XX》设计三段式价值陈述:理论突破点(文科)/技术革新点(理科)+实践应用场景+学科建设意义”

三、文献处理

经典文献溯源(文科侧重):“列出该领域5篇奠基性文献,提炼核心观点并绘制理论演进时间轴”

前沿追踪(理工侧重):“检索近3年顶刊文献,用表格对比[技术A][技术B]的性能参数与研究空白”

批判性综述:“针对[理论/方法]的争议点,整理正反双方的代表性文献各3篇,制作论点对比矩阵”

四、结构设计

文科框架:“请按’现象描述-理论透视-矛盾分析-解决路径’四部分构建论文框架,每部分给出3个关键词”

理工框架:“设计IMRAD结构模板:方法部分需包含实验设计流程图,结果部分预留数据可视化接口”

混合型框架:“在实证研究论文中嵌入理论反思模块,建议在讨论部分第3小节加入与[经典理论]的对话”

五、内容生成(附流程演示)

理论阐释(文科):“用’概念界定→学派比较→研究适配性分析’三步法解析[理论名词],各步骤控制在200字内”

方法描述(理工):“以’设备参数-实验步骤-控制变量’的逻辑链描述方法,技术细节用编号列表呈现”

跨学科衔接:“在[技术应用]章节加入社会学视角分析,要求生成2个伦理讨论子标题及相关案例”

Deepseek+妙笔千言流程演示:

以理论阐释为例,发送提示词及研究方向给deepseek,让它根据你的选题进行核心内容生成。

截屏2025-02-26 11.16.28.png

耐心等待deepseek生成,将整个内容复制下来。

截屏2025-02-26 11.11.00.png

打开「妙笔千言」辅助工具专业版,选择好如选题、学历、专业、字数等基础选项,将DeepSeek生成好的内容粘贴进去。

截屏2025-02-26 11.22.26.png点击下一步使用实时提纲功能(也可自写提纲)后点击生成,十分钟拿下论文初稿。

截屏2025-02-26 11.24.06.png

实测内容规范、格式标准,效率提升极大。

六、数据分析

质性分析(文科):“对访谈文本进行主题编码,生成包含’原始语句→编码标签→主题归类’的三级表格”

量化处理(理工):“为数据集[描述特征]推荐3种统计方法,用公式说明适用条件并附SPSS/R代码示例”

混合方法:“设计三角验证方案:用问卷调查数据支撑实验结论,建议在第五章第2节加入信度分析”

七、优化指令

学术化改写:“将口语化段落升级为学术表达:'我们发现…‘→’本研究数据表明…’,要求保持原意不变”

逻辑检测:“检查[内容段落]是否存在循环论证,用反例测试法验证推论链的可靠性”

降重技巧:“对指定段落进行术语替换+语序调整+冗余信息删减,重复率降低目标设定为15%以下”

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值