Agent是要颠覆RPA的,这个爆火的开源Agent平台,不仅仅是任务自动化
源代码
http://www.gitpp.com/nazha/ai-agixt
一个动态的人工智能自动化平台,支持DeepSeek,其设计和功能旨在协调多个AI提供商,实现高效的任务执行和指令管理。
不仅仅是RPA
该开源平台的智能功能(如 Smart Instruct 和 Smart Chat)无缝集成了 Web 搜索、规划策略和对话连续性,从而改变了用户与 AI 之间的交互。通过利用强大的插件系统,包括 Web 浏览和命令执行,智能Agent 成为 AI 模型和用户之间的多功能桥梁。
Agent之所以不仅仅是RPA(Robotic Process Automation,机器人流程自动化),主要基于以下几个方面:
一、技术内核与智能程度
-
RPA:
-
技术基础:RPA主要基于固定的规则执行简单的自动化任务,通过模拟人类在数字化环境中的操作,如鼠标点击、键盘输入等,来实现业务流程的自动化。
-
智能程度:RPA缺乏自主学习和灵活应变的能力,其行为相对固定和机械,主要适用于结构化数据和标准化流程。
-
Agent:
-
技术内核:Agent融合了人工智能技术,如机器学习、深度学习等,能够感知环境信息,并基于这些信息做出决策和行动。
-
智能程度:Agent展现出更高层次的智能,能够自主学习并适应复杂环境变化。例如,在面对复杂的客户咨询场景时,Agent可以理解自然语言,分析语义背后的意图,并根据过往的经验和学习到的知识,动态地调整回答策略。
二、自主性与灵活性
-
RPA:
-
自主性:RPA通常需要人工明确地触发流程,并且在执行过程中严格遵循设定的路径。
-
灵活性:RPA对于未预期的情况可能会出现卡顿或报错,需要人工干预来继续执行。
-
Agent:
-
自主性:Agent具有较强的自主性,可以主动监测环境变化,自行决定何时采取行动以及采取何种行动。
-
灵活性:Agent能够根据不同的环境条件和目标要求,做出不同的行为决策,更加灵活多变。
三、交互能力与多模态支持
-
RPA:
-
交互能力:RPA主要与软件应用的用户界面进行交互,模拟人类操作鼠标、键盘等输入设备来完成任务,其交互对象较为单一和固定。
-
多模态支持:RPA主要支持文本和结构化数据的处理,对于图像、音频等非结构化数据的支持有限。
-
Agent:
-
交互能力:Agent具备强大的多模态交互能力,不仅可以与用户进行自然语言对话,还能与各种智能设备、系统以及其他AI Agent进行交互协作。
-
多模态支持:Agent能够处理结构化、半结构化和非结构化数据,深入分析文本、图像、音频等多种类型的数据,挖掘其中的隐藏信息和潜在价值。
四、应用场景与拓展性
-
RPA:
-
应用场景:RPA更多应用于重复性、规则化的事务处理,如财务数据对账、订单处理、后台数据迁移等。
-
拓展性:RPA的应用场景相对有限,主要局限于结构化数据和标准化流程。
-
Agent:
-
应用场景:Agent的应用场景则更为广泛,可应用于需要动态决策、互动性强的场景,除了企业流程优化,还涵盖智能客服、智能安防、智能驾驶、智能教育等众多领域。
-
拓展性:随着技术的发展,Agent的应用边界还在不断拓展和延伸,具有更强的适应性和可扩展性。
五、功能特性与用户体验
-
RPA:
-
功能特性:RPA主要关注于流程的自动化,功能相对单一。
-
用户体验:RPA主要面向企业内部的业务流程优化,对于终端用户的体验关注较少。
-
Agent:
-
功能特性:Agent不仅具备自动化执行任务的能力,还具备智能决策、多模态交互、自主学习等高级功能。
-
用户体验:Agent通过无缝集成Web搜索、规划策略和对话连续性等功能,改变了用户与AI之间的交互方式,提升了用户体验和满意度。
概括起来,Agent之所以不仅仅是RPA,是因为它在技术内核、自主性、交互能力、应用场景、功能特性以及用户体验等方面都展现出了更强大的能力和更广泛的应用前景。Agent融合了人工智能技术,能够感知环境、进行决策和行动,成为AI模型和用户之间的多功能桥梁。
Agent是要颠覆RPA的,这个爆火的开源Agent平台,不仅仅是任务自动化
源代码
http://www.gitpp.com/nazha/ai-agixt
一个动态的人工智能自动化平台,支持DeepSeek,其设计和功能旨在协调多个AI提供商,实现高效的任务执行和指令管理。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。