硅谷科技评论(SVTR.AI)依托[AI创投库]、[AI创投会]、[AI创投营]和全球投资网络,打造前沿科技创投社区。
在生成式AI迈入第三年之际,AI 模型与 API 提供商的独立第三方测评机构Artificial Analysis,最近发布2025年第一季度AI大模型趋势报告,呈现出一幅结构性变革的宏图。AI不再仅是大模型之间的军备竞赛,而是转向了以“思考能力、运行效率与实际落地”为核心的新三角竞速。
硅谷科技评论SVTR.AI创投库数据显示,**每 8-12 周,顶级实验室都会发布新模型。**从推理模型跃迁、MoE 架构优化,到中国力量的系统性崛起,AI 世界的权力版图正在重塑。OpenAI、Google 仍处高位,但领先优势已不再坚不可摧;与此同时,DeepSeek、字节跳动、MiniMax 等中国团队正以开源模型与多模态突破构建新高地。
这一轮趋势不仅关乎技术演进,更揭示了一场关于智能范式和全球竞争秩序的深层对话。
一、“会思考”的模型成主流,智能水平再度跃升
- 先想后答:推理模型(Reasoning Model)在输出答案前会先生成成百上千个“思考 token”,平均耗用 token 是传统模型的 10 倍,却显著提升复杂任务正确率。
- 智能新高点:OpenAI o4-mini-high、Google Gemini 2.5 Pro、xAI Grok 3 组成第一梯队,在 Artificial Analysis 智能指数上稳居前列。
- 典型案例:在蒙提霍尔变体测试(Monty Hall problem)中,非推理模型 GPT-4o 直接给出错误答案,而 Gemini 2.5 Pro 通过 1900+ token 的推理路径纠正了陷阱,体现“思考”优势。
二、AI智能“排位赛”:OpenAI仍领先,但差距缩小
- OpenAI 仍在顶端,但被逼近:四大美系实验室(OpenAI、Google、Anthropic、xAI)与 NVIDIA、DeepSeek 等进入“同屏竞争”,前沿模型已形成 3 ~ 4 个月的迭代节奏。
- 开源权重抬高大众门槛:DeepSeek R1、Llama 3.1 Nemotron Ultra 等开源推理模型的智能得分已触及闭源模型 90% 以上,为开发者打开了“高智商平价通道”。
三、多专家架构(MoE)带来效率革命,小模型越来越聪明
- 稀疏激活:Llama 4 Maverick 仅激活 4.2%(17B/402B)参数即可达到 GPT-4 级推理水平;DeepSeek R1、Qwen3 235B A22B 亦采用类似架构。
- 成本雪崩式下降:与 2024 年 9 月相比,同等智能推理的推理成本再降 32 倍;若对标 2023 年 3 月首发 GPT-4,累计降幅已超 1000 倍。
- 硬件+软件双轮驱动:Flash Attention、Speculative Decoding 等软件优化叠加新一代 GPU/专用加速卡,让高智商体验首次具备“工程可落地”的单次调用成本。
四、中国AI力量崛起:从追赶到对标
- 非推理榜首:DeepSeek V3 0324 登顶全球非推理模型智能第一,Llama 4 Maverick 紧随其后。
- 多模态突破:字节跳动 Seedream 3.0、快手 Kling 1.6 在图像/视频 ELO 榜单中超越 Recraft V3、与 Google Veo 2 并列第一梯队,中美形成视觉模型双寡头格局。
- 开源拉近距离:中国各大AI实验室的开源权重让中文开发生态拥有与英美同步的前沿模型,降低了本土创新门槛。
五、AI Agents开始落地:从聊天助手到“自动程序员”
Agent(智能体)成为2025年最值得关注的应用趋势。与传统AI助手不同,Agent更像是“能主动完成任务的员工”,它们会自己规划任务步骤、调用工具、执行代码、搜索信息乃至回复邮件。例如最新的AI编程助手可以浏览整个代码库,创建文件、运行命令,极大减少了人类干预。
目前主要应用场景包括:
- Coding:最新编码 Agent 能浏览代码库、生成文件并运行测试,相当于配备一名初级工程师。
- Deep Research:研究 Agent 将复杂检索拆分为多轮链式调用,自行汇总洞见。
- 桌面 / 客户支持:通过桌面自动操作或语音驱动 API 调用,实现 7×24 小时服务。
六、多模态AI走向融合,视觉、音频AI群雄并起
- 图像:GPT-4o 以 ELO 1152 创下视觉质量新高;Seedream 3.0 紧随其后,重塑“AI 绘图三国杀”格局。
- 视频:Google Veo 2、MiniMax T2V-01 Director、快手 Kling 1.6 让高保真 1080p 生成从概念迈向商业试点。
- 语音:ElevenLabs Scribe 语音转写**词错误率(WER)**仅 8%,刷新行业纪录;MiniMax Speech-02-HD、OpenAI TTS-1 在文本合成音质上逼近自然对话。
总结:AI正进入“智能+效率”并重的下一个时代
2025年第一季度表明:参数规模不再是唯一竞速线,“思考深度 + 运行效率 + 场景落地”构成新三角。随着推理模型普及、Agent 增长、多模态竞合,以及中国力量的快速追平,全球 AI 正在从“智能型 AI”迈向“智能 + 行动”并重的下一阶段。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。