1. 动机
利用预训练语言模型(PLM)增强具有详细文本描述的原始三元组的内在语义联系。该分支中的典型方法分别将输入查询(与实体和关系相关联的文本描述)及其候选实体映射到特征向量,然后最大化有效三元组的概率。 随着大型语言模型的快速发展,这些方法越来越受到人们的关注。根据语言模型的特性,输入查询提供的相关和具体的上下文信息越多,结果嵌入的判别性越强。在本文中,通过观察和验证,我们发现了一个被忽视的事实,即查询中头部实体的关系感知邻居可以作为更精确的链接预测的有效上下文。基于这一发现,我们提出了一种关系感知锚点增强知识图谱补全方法(RAA-KGC)。具体来说,在我们的方法中,为了提供目标实体可能是什么样子的参考,我们首先在头部实体的关系感知邻域中生成锚实体。然后,通过将查询嵌入拉向锚的邻域,对目标实体匹配进行调整,使其更具判别性。我们大量的实验结果不仅验证了RAA-KGC的有效性,而且还表明,通过集成我们的关系感知锚点增强策略,可以显著提高当前领先方法的性能,而无需进行实质性修改。
2. 贡献
- 通过观察和实验验证,本文发现了一个以前被忽视的事实,即关系感知实体可以作为目标实体预测的有效上下文。通过这种设置,现有方法可以在不需要进行实质性修改的情况下实现显著的性能改进。
- 本文提出了一种关系感知锚增强知识图谱补全算法(RAA-KGC),方法是用目标实体原型来补充查询。所提出的方法可以生成具有判别性和紧凑的实体嵌入。因此与比较的最先进的算法相比,实现了优越的性能。
3. 方法
(1)问题陈述
给定一个知识图谱 ,其中 和 分别是实体和关系的集合。本文专注于链接预测子任务,目标是预测缺失的头实体或尾实体。方法框架如下图所示。
(2)锚点生成
RAA-KGC通过利用查询头实体的关系感知邻居实体来提供目标实体的上下文信息。定义关系感知锚点生成操作如下:
其中 是从关系感知实体集 中随机采样的锚点集合。
(3)锚点增强嵌入生成
使用两个编码器 和 来生成锚点增强嵌入。锚点增强嵌入的计算公式如下:
(4)训练与推理
采用对比学习损失函数,通过最小化 和 来优化锚点增强嵌入。推理时,计算目标实体和查询的余弦相似度,并选择最高得分作为预测结果。
4. 实验
数据集
在三个常用数据集上评估RAA-KGC的性能:WN18RR、FB15k-237和Wikidata5M-Trans。
Dataset | train | valid | test |
---|---|---|---|
WN18RR | 86,835 | 3034 | 3134 |
FB15k - 237 | 272,115 | 17,535 | 20,466 |
Wikidata5M - Trans | 20,614,279 | 5,163 | 5,163 |
对比基线
与十二种最先进的方法进行比较,包括基于三元组和基于文本的方法。
实验结果
(1)总体性能比较
- WN18RR:RAA-KGC在MRR、Hit@1、Hit@3和Hit@10上均优于SimKGC。
- FB15k-237:RAA-KGC在某些指标上表现不如SimKGC,可能是因为该数据集的拓扑结构较密集。
- Wikidata5M-Trans:RAA-KGC在所有指标上均表现出色。
(2)锚框增强集成的重要性比较
(3)兼容性分析
(4)实例分析
5. 讨论
- 锚点增强嵌入的重要性:实验表明,锚点增强嵌入在预测过程中起到了重要作用。
- 关系细粒度性能:RAA-KGC在大多数关系类型上优于SimKGC。
- 样本大小的影响:随着样本大小的增加,性能有所提升,但过多的样本引入噪声限制了进一步的性能提升。
- 兼容性:RAA框架与其他基线模型兼容,提升了它们的性能。
- 未见实体上的性能:RAA-KGC在归纳场景下表现出色,显示出较强的泛化能力。
6. 结论
本文提出了RAA-KGC方法,通过生成目标实体的一般示例并将其嵌入拉向锚点邻域,显著提高了知识图谱补全的性能。未来的研究可以结合子图的结构和文本信息来进一步提高KGE模型的性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。