什么是机器学习
对于某个给定的任务T,在合理的性能度量方案P的前提下,某计算机程序资助学习任务T的经验E;随着提供合适、优质、大量的经验E,该程序对于任务T性能逐步提高。
即:随着任务的不断执行,经验的积累会带来计算机性能的提升。
目前主要的算法有:
- 监督学习 supervised learning;
- 非监督学习 unsupervised learning;
- 半监督学习 semi-supervised learning;
- 强化学习 reinforcement learning;
监督学习是不断向计算机提供数据(特征),并告诉计算机对应的值(标签),最后通过大量的数据,让计算机自己学会判断和识别。分类和回归任务是监督学习的例子。例如,手写数字识别和房价预测。
非监督学习与监督学习的区别是,只向计算机提供数据(特征),但并不提供对应的值(标签)。例如需要计算机学会识别猫和狗,这时仅提供猫和狗的图片(特征),但是并不告诉计算机,哪些图片是猫,哪些图片是狗,让计算机自己去总结归纳出两者的特征规律。
半监督学习是一种综合了有标签数据和未标签数据的学习方式。模型通过同时使用这两种类型的数据进行训练,以提高性能。在半监督学习中,可以使用少量带有标签的数据和大量未标签的数据进行模型训练。
强化学习是一种通过观察环境、执行动作并从奖励中学习的学习方式。它旨在使智能体(agent)在环境中学会采取一系列动作,以最大化累积奖励。AlphaGo 是一个著名的强化学习应用,通过与自己下围棋的对局进行训练,最终成为世界冠军。