目录
函数概念与特性
设r与y是两个变量,D是一个给定的数集,若对于每个值r∈D,按照一定的法则,有一个确定的值y与之对应,则称y为r的函数,记作 y=f(.x).称r为自变量,y为因变量.称数集D为此函数的定义域﹐定义域一般由实际背景中变量的具体意义或者函数对应法则的要求确定.(总结:一个y值只能有一个对应的x值)
反函数
设函数 y=f(.x)的定义域为D,值城为R.如果对于每一个y∈R,必存在r∈D使得y=(x)成立,则由此定义了一个新的函数,x=φ( y)。这个函数就称为函数y=f(x)的反函数,一般记作.x=f-1(y),它的定义域为R。值域为D.相对于反函数来说,原来的函数也称为直接函数。(解释:反函数的反思意味着就是你的对应法、对应规律是逆运算,常有x=φ( y)=f-1 (y)推导→f[φ(x)]=x或f[f-1(x)]=x可以叫湮灭,)
以下两点需要说明:
第一,严格单调两数必有反函数﹐比如函数 y=x2(r∈[o,+∞))是严格单调函数,故它有反:数r=√y.(思考:什么函数具有反函数→严格单调两数必有反函数→由导数判断单调→若导数一阶导恒正即f’>0,则f严格单调增且若导数一阶导恒负即f’<0,则f严格单调减,则函数有反函数)思考:有反函数必严格单调对或错→错(举例)
本函数为先单调减后单调增,反函数为本身(蓝色部分))
- 若把x=f-1( y)与y=f(x)的图形画在同一坐标系中,则它们完全重合.只有把y= f(x)的反函数x=f-1( y))写成y=f-1(x)后,它们的图形才关于y=r对称,事实上这也是字母x与y互换的结果.(解释:x=f-1( y)与y=f(x)在几何形状中图形完全一样,不能说关于y=x对称,当y=f-1( x)与y=f(x)时,二者才能说关于y=x对称。图形关于x,y对称的原因是什么,是x y字母互换才会对称,是只谈对应法则的逆贪只谈对应法则的那个反字他们图是一样的)
复合函数
设,y= f(n)的定义域为D,函数u=g(x)在D上有定义﹐且 g(D)⊂D,则由y=f[g(x))](x∈D)。确定的函数,称为由函数u=g(x )和函数y=f(u)构成的复合函数,它的定义域为D,u称为中间变量.要掌握复合的方法。
(例题):
思考:为什么求出来是4的时候直接开根号就他的最大值,为什么求出来是0的时候直接开根号就是他的最小值?举例:
当u取得最大值时,根号也是最大值,当u取得最小值时,根号也是最小,因为他们俩具有相同单调性。
(例题):