目录
函数概念与特性
设r与y是两个变量,D是一个给定的数集,若对于每个值r∈D,按照一定的法则,有一个确定的值y与之对应,则称y为r的函数,记作 y=f(.x).称r为自变量,y为因变量.称数集D为此函数的定义域﹐定义域一般由实际背景中变量的具体意义或者函数对应法则的要求确定.(总结:一个y值只能有一个对应的x值)
反函数
设函数 y=f(.x)的定义域为D,值城为R.如果对于每一个y∈R,必存在r∈D使得y=(x)成立,则由此定义了一个新的函数,x=φ( y)。这个函数就称为函数y=f(x)的反函数,一般记作.x=f-1(y),它的定义域为R。值域为D.相对于反函数来说,原来的函数也称为直接函数。(解释:反函数的反思意味着就是你的对应法、对应规律是逆运算,常有