函数的四种特性——有界性 单调性 奇偶性 周期性

本文详细介绍了函数的五种基本性质:有界性、单调性、奇偶性、周期性及一些重要结论。通过这些性质的学习,可以更好地理解函数的行为特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 目录

1、有界性

2、单调性

3、奇偶性

4、周期性

5、重要结论✬✬✬(必背)


1、有界性

设f(x)的定义城为D,数集I⊂D.如果存在某个正数M,使对任一x∈I,有|f(x)|≤M,则称f(x)在I上有界:如果这样的M不存在,则称f(.x)在I上无界。

[注] (1)从几何上看, 如果在给定的区问,函数y= f(x)的图形能够被直线y=-M和y=M “完全包起来",则为有界;从解析上说,找到某个正数M,使得|f(x)|≤M,则为有界.(2)有界还是无界的讨论首先是指明区间I,不知区间,无法谈论有界性.比如y=x(1)在(2, +∞)内有界。但在(0.2)内无界.(3)事实上。只要在区间1上存在点.ro,使得函数limf(x)的值为无穷大,则没有任何两条直线y=-M和y=M可以把I上的f(x)“包起来”,这就叫无界.

2、单调性

设f(x)的定义城为D,区间I⊂D.如果对于区间I上任意两点x1,x2.当x1<x2时,恒有f(x1)<f(x2)则称f(x)在区间I上单调增加.如果对于区间I上任意两点x1,x2.当x1<x2时,恒有f(x1)>f(x2)时则称f(x)在区间I上单调减少。

3、奇偶性

设f(x)的定义域D关于原点对称(即若x∈D,则-x∈D).如果对于任-x∈D,恒有f(-x)=f(x)(.r)则称f(x)为偶函数.如果对于任一x∈D,恒f(-x)=- f(x),则f(x为奇函数.我们熟知的是偶函数的图形关于y铀对称,奇函数的图形关于原点对称。

4、周期性

设f(x)的定义域为D,如果存在一个正数T,使得对于任一x∈D,有r±T∈D,f(x+T)=f(x).则称f(.x)为周期函数,T称为f(x)的周期。从几何图形上看,在周期函数的定义域内,相邻两个长度为T的区间上,函数的图形完全一样.

5、重要结论✬✬✬(必背)

①若f(x)是可导的偶函数,则f' (x)是奇函数。

②若f(x) 是可导的奇函数,则f' (x)是偶函数。

③若f(r) 是可导的周期为T的周期函数,则f' (x)也是以T为周期的周期函数。

④连续的奇函数的一切原函数都是偶函数。

⑤连续的偶函数的原函数中仅有一个原函数是奇函数。

⑥若连续函数f(x) 以T为周期且\LARGE \int_{0}^{T}f(x)dx=0,则f(x)的一切原函数也以T为周期。

⑦若f(x) 在有限区间(a,b)内可导且f'(x) 有界,则f(x)在(a,b)内有界。(用导数的大小控制函数的大小如果有限区间内导数有界,函数必有界,但函数没办法控制导数→导数f'(x)叫变化率。在一个有限的区间内如果变化率有界,函数必有界。可回答拉格朗日中值定理的作用

拓展:若\LARGE \lim_{x\to +00}(x)=+∞⟹\LARGE \lim_{x\to +00}f(x)=+

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值